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INTRODUCTION

The word perfusion describes, in general, the passage of a fluid through natural
channels in a tissue. In the most cases, this general meaning is narrowed to
blood, and perfusion is understood as circulation of blood through tissues. The
topic of this habilitation thesis, perfusion imaging, relates to methods providing
parameters describing perfusion. Examples of such perfusion parameters are blood
flow, blood volume, vessel-wall permeability expressed per unit mass or unit volume
of tissue. These parameters describe the physiological state of the tissue on the
microvascular level. They are important biomarkers in many clinical and biological
applications. Perfusion imaging is important especially in oncology, where it
provides a noninvasive way to early identification of tumor types. Furthermore,
it provides an early-stage insight into the efficacy of tumor treatment since the
reaction to tumor treatment is much faster on the microvascular level expressed
by perfusion parameters (days to weeks) than on the macroscopic level expressed
by standard anatomical images (months). That means that perfusion imaging can
give a substantially earlier evaluation of the treatment process than the standard
criteria based on measurements of tumor volume from anatomical images. Hence,
such early evaluation of the treatment response is a key to qualified decisions on
the treatment strategy, which can ultimately prolong or safe lives and substantially
decrease health-care costs.

Perfusion imaging is a valuable tool also in preclinical research, especially in
testing of new treatment strategies on animals (e.g. antiangiogenic treatment in
oncology) and drug-delivery paths (e.g. drug delivery through the blood brain
barrier in neurology).

However, in many applications, current perfusion imaging methods are not suffi-
ciently reliable for routine clinical use, where they remain mostly at the experimental
level, although their principles have been known for several decades.

The topic of perfusion imaging is a unique multidisciplinary field. It combines the
physics of the image acquisition processes, knowledge of physiology and mathematics
needed for understanding and modeling of the perfusion process, as well as the field
of signal and image processing needed for image reconstruction and image pre- and
post-processing. An important part of pharmacokinetic-model fitting in perfusion
imaging is also understanding of approaches to inverse problem solving. Furthermore,
identification of relevant applications for perfusion imaging and management of
the examined subjects (patients, animals), as well as interpretation of the results
often requires medical, veterinarian or biological expertise. This multidisciplinary
character of perfusion imaging is one of the reasons of the author’s enthusiasm
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for this field. The combination of the above mentioned disciplines overlaps very
well with the curriculum taught at the Department of Biomedical Engineering at
Brno University of Technology. The author has introduced perfusion imaging, to a
smaller or larger extent, into several courses, including Biological system modeling,
Models in Biology and Epidemiology, Systems Biology, Traditional Medical and
Ecological Imaging Systems and Imaging Systems with Nonionizing Radiation.

The research and teaching activity of the author in the field of perfusion imaging
started in 2004 as a natural continuation of the cooperation with prof. Torfinn Taxt
at University of Bergen, Norway, and his colleagues. The know-how in this field was
gradually gained form the Norwegian partners and extended further, mainly in frame
of research projects including colleagues from the Institute of Scientific Instruments
of the Czech Academy of Sciences, Department of Biomedical Engineering at Brno
University of Technology, the author’s bachelor, master and doctoral students, as
well as colleagues from the cooperating institutes.

The thesis is written as a collection of selected journal papers with an introduc-
tion. The introduction is meant as an explanation of the perfusion imaging field,
starting with a general description, which is gradually narrowed down to ultrasound
and magnetic-resonance (MR) perfusion imaging and their specifics. Furthermore,
the focus is put on the specific topics where the author sees the main contribution
of his group.
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1 THEORY OF PERFUSION IMAGING
Most perfusion imaging methods, including the class of methods related to the focus
of the author’s group, are based on intravenous administration of a contrast agent
and imaging of the tissue of interest before, during and after the administration. The
recorded image sequence is subsequently processed. Contrast agents are sometimes
referred to as indicators or tracers. The word indicator refers to a substance
introduced into a physiological system that can be detected and give information
about the system. A tracer is a type of indicator that has the same chemical
structure as a systemic substance of interest [1].

For these techniques, the process of perfusion imaging can be divided into the
following parts (Fig. 1):

• Data acquisition – acquisition of raw image data upon contrast-agent admin-
istration.

• Image-sequence reconstruction – reconstruction of an image sequence from
the acquired raw image data.

• Preprocessing – e.g. motion correction due to cardiac and/or respiration,
noise suppression.

• Conversion from image intensity to contrast-agent concentration.
• Extraction of contrast-agent concentration curves from the converted image

sequence – for each voxel of interest or for each region of interest (ROI); in the
following text, the term ROI will be used, without a loss of generality, for the
case of single voxels or a set of voxels belonging to a presumably homogeneous
tissue.

• Pharmacokinetic-model fitting – In quantitative perfusion-imaging methods,
a pharmacokinetic model is then fitted to these contrast-agent concentration
curves. The estimated parameters of the model and their combinations are
the sought perfusion parameters of the given ROI (see Tab. 1.1 below for a
list of perfusion parameters).

• Visualization, interpretation – e.g. perfusion-parameter maps overlaid over
an anatomical image; followed by interpretation of the results, possibly classi-
fication.
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Fp [ml/min/ml]

vp [ml/ml]

PS [ml/min/ml]

Data 
acquisition

Image-sequence 
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Preprocessing
(e.g. motion 
compensation) Conversion to CA 

concentration

Extraction
of CA conc. 
curves

Pharmacokinetic-
model fitting

Visualization Interpretation

Fig. 1.1: Perfusion-imaging process. Example images from MR perfusion imaging
of tumor-bearing mice, axial slice, tumor (hyper-intense contrast-agent-uptaking
area in the upper right area of images) located in the flank of the hind limb.
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Quantity Description Unit
𝐹𝑝 Plasma flow ml/min/ml
𝐹𝑏 Blood flow ml/min/ml

𝑃𝑆
Permeability-surface area product (measure of vessel-wall
”leakiness” for the contrast agent)

ml/min/ml

𝑣𝑝 Plasma volume ml/ml
𝑣𝑏 Blood volume ml/ml
𝑣𝑒 Volume of the extravascular extracellular space (EES) ml/ml

𝐸
Extraction fraction (fraction of contrast-agent particles
that are extracted into the interstitium)

-

𝑇𝑐

Capillary mean transit time (average time needed for
a contrast-agent particle to pass through the perfusion
unit)

min

𝐾𝑡𝑟𝑎𝑛𝑠
Volume transfer constant (compound parameter:
𝐾𝑡𝑟𝑎𝑛𝑠 = 𝐸𝐹𝑝)

1/min

𝑘𝑒𝑝

Interstitium-to-plasma rate constant (compound param-
eter: 𝑘𝑒𝑝 = 𝐸𝐹𝑝/𝑣𝑒)

1/min

𝜎, 𝛼

Parameters describing the the statistical distribution of
the capillary transit times (used in DCATH and GCTT
models, 𝜎, 𝛼 capture the structure of the microvessels)

min, -

𝐵𝐴𝑇
Bolus arrival time (delay between the global AIF and
the local perfusion-unit-specific local AIF)

min

Tab. 1.1: Overview of the most usual perfusion parameters.
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To narrow down the scope of this text, it is important to mention also perfusion-
analysis methods that are not in focus of our work and will not be considered
in the following sections. In one group of these methods, only so called semi-
quantitative parameters of the contrast-agent concentration curves are estimated,
without proper pharmacokinetic modeling of their course. Such semi-quantitative
perfusion parameters are for example slope of the initial rising phase of the contrast-
agent inflow or the area under the curve within some time window. Several semi-
quantitative approaches to perfusion imaging are based on models of contrast-agent
concentration curves that are fitted to the measured data. Some of these models
might be denoted as pharmacokinetic models as they describe mathematically the
physiology of the vascular system. For example the gamma-variate model [2, 3]
is related to a series of compartments1 that represent neighboring sections of the
vascular system. Other such pharmacokinetic models are for example the lagged-
normal [4, 3], the Local Density Random Walk (LDRW) and the First Passage Time
(FPT) models [5, 3]. Use of these models is typical for perfusion imaging using
ultrasonography. The problem of this approach is that they describe the shape of
the contrast-agent bolus and the whole vascular system from the location of bolus
administration to the tissue ROI. This means that the estimated parameters of these
models depend not only on the tissue ROI but also on the bolus-administration
procedure and on the physiology of the arterial tree proximal to the tissue ROI.
This makes these methods hardly reproducible and comparable among different
imaging centers.

An even more simplistic approach, falling also into the field of perfusion imaging,
includes only the acquisition part. The acquired image sequence is then visually
(subjectively) assessed without any modeling or estimation of semi-quantitative
parameters.

Both the semi-quantitative and visual approaches are not in the focus of our
work as they depend on the used contrast agent, its administration, the imaging
device itself, the acquisition setup and the operator (in the latter case). The trend in
modern medical imaging is to use an imaging device not as a ”snapshot camera”, but
rather as a measuring apparatus that can measure selected biomarkers, in physical
units, independently of the acquisition details and vendors of the used devices. Use
of such user- and vendor-independent quantitative imaging methods minimizes the
subjectivity of radiographer’s decision and allows for multicentric studies. Thus,
only the quantitative approaches (based on pharmacokinetic modeling allowing
separation of the administered bolus shape and the properties of the proximal

1In pharmacokinetics, a compartment is an idealized well-mixed volume with homogeneous
concentration of the observed substance.

18



arterial tree from the perfusion properties of the tissue ROI) have been in focus of
our work, hence the name quantitative in the title of the thesis. Thus, the following
text deals only with the quantitative perfusion imaging methods.

A plethora of perfusion imaging approaches exist. They vary based on
• the contrast-agent administration method (e.g. bolus, dual-bolus, infusion),
• imaging modality (e.g. positron emission tomography, computed tomography,

MR imaging), the selected acquisition method and its setup,
• method for conversion from image intensity to contrast-agent concentration,
• pharmacokinetic model,
• approach to model fitting,
• other specifics related to the application, e.g. acquisition synchronized with

cardiac and sometimes respiration activity, together with the subsequent
image registration is needed for cardiac applications.

Perfusion imaging methods should not be confused with flow velocity imaging
where blood velocity and flow is measured in big vessels using e.g. Doppler ultra-
sonography or MR velocity imaging techniques. In perfusion imaging, perfusion
parameters are measured on the microvascular level the extents of which are far
lower than the spatial resolution achievable with standard medical imaging modali-
ties. The perfusion parameters refer to average quantities within the ROI (e.g. a
voxel), for example average blood volume within the ROI.

1.1 Short history overview

Measuring of perfusion started in nuclear medicine in early 1960s as a preclinical
(i.e. applicable to laboratory animals) measurement method. It was based on
administration of radioactive microspheres (preferably by a catheter as a bolus
into left atrium or left ventricle). After the first passage through the vasculature,
the microspheres remained trapped in the arterioles or capillaries. Subsequently,
the animals were sacrificed and tissue samples harvested. Then, the number of
microspheres was measured using scintigraphy. [6, 7]

The first application of radiolabeled microspheres in man for assessment of
perfusion was done in 1964 by Wagner et al. [8] where albumin-based microspheres
were used for assessment of pulmonary blood flow. The radioactivity was originally
detected by rectilinear scanners (a radiation detector physically moved over the
surface of the patient), later replaced by gamma cameras in late 1960s.

From 1990s, use of radiolabeled microspheres in preclinical quantification of
perfusion was partly substituted by use of fluorescent microspheres [9].
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Perfusion imaging based on radiolabeled substances developed further. Planar
imaging was replaced by tomographic imaging, namely by single-photon emission
computed tomography (SPECT) and later by positron emission tomography (PET).
For routine clinical practice, SPECT was introduced in the late 1980s [10]. PET
imaging is a more expensive and technologically more complex imaging modality
with shorter-lived and less easily obtainable radioisotopes than in SPECT imaging.
PET has been considered to be a research tool for a long time. Compared to
SPECT, PET provides higher spatial resolution and allows for smaller radioactive
doses [11]. The most SPECT and PET perfusion imaging methods rely on static
cumulative (uptake) images acquired after the radiotracer has accumulated in the
tissue. In contrast to radiolabeled microspheres mentioned above, the SPECT/PET
radiotracers do not accumulate intravascularly but extravasate and take part in
metabolic changes in the cells [11].

Later, absolute quantification of blood flow has been pursued, especially using
PET with the 𝐻15

2 𝑂 tracer. This approach is based on dynamic imaging acquired
before, during and after administration of the tracer and application of pharmacoki-
netic models to the acquired image sequences in the postprocessing step [12]. The
pharmacokinetics-based 𝐻15

2 𝑂 PET perfusion imaging has become gold standard in
myocardial perfusion imaging [10, 11]. These pharmacokinetics-based techniques
are closely related to the focus of the author’s research group.

Computed Tomography (CT) perfusion imaging is based on intravenous admin-
istration of an iodinated contrast agent and dynamic CT scanning, followed by
pharmacokinetic modeling of the acquired image sequences, similarly to 𝐻15

2 𝑂 PET
perfusion imaging mentioned above. The basics of CT perfusion imaging were laid
down in 1979 [13] and 1980 [14] (before 𝐻15

2 𝑂 PET perfusion imaging). However
clinical application, mainly in acute-stroke and tumor patients, came much later.

Perfusion imaging in magnetic resonance is a term referring to several groups of
methods. The first group is based on administration of an exogenous contrast agent,
similarly to CT and PET/SPECT mentioned above. The most MR contrast agents
are chelates of gadolinium. Their concentration is related to shortening of 𝑇1, 𝑇2 and
𝑇 *

2 relaxation times. Depending on the measured relaxation time, the contrast-agent
based methods are further categorized into Dynamic Contrast-Enhanced (DCE)
Magnetic Resonance Imaging (MRI) (based on 𝑇1-weighted image sequences) and
Dynamic Susceptibility Contrast-enhanced (DSC) MRI (based on 𝑇2- or 𝑇 *

2 -weighted
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image sequences).
The basics of DSC-MRI date back to late 1980th when Villringer at al. [15] used

a gadolinium-based contrast agent on rats (in brain) and showed contrast-agent
curves related to concentration and suggested their use for perfusion imaging. DSC-
MRI on human became reality in the 1990th [16, 17, 18]. The main application of
DSC-MRI has been stroke imaging where it provides, in combination with diffusion-
weighted MRI, identification of the so called penumbra – the potentially salvageable
brain tissue.

DCE-MRI started in early 90th, with applications in cardiology [19] (myocardium
perfusion of an isolated rat’s heart and of healthy human subjects in vivo), neurology
[20, 21, 22] (assessment of blood-brain-barrier permeability in multiple-sclerosis and
brain-tumor patients). The main domain of DCE-MRI has been tumor imaging.

Another group of MR-perfusion-imaging methods does not require application of
any exogenous contrast agent. These methods rely on an endogenous contrast agent
being blood. In this case, blood is labeled ”magnetically” by the MR scanner’s
coil system, i.e. by a defined modification of the magnetic moment of the blood
flowing to the regions of interest. These so called Arterial Spin Labeling (ASL)
methods are known since 1992 [23] and have become very popular, partly also in
the clinics in the recent decade. Another MR perfusion imaging method with no
need for an exogenous contrast agent is the Intravoxel Incoherent Motion (IVIM)
technique, known from 1986 [24]. It is related to diffusion MRI as blood flow mimics
a water-molecule diffusion process. The ASL and IVIM techniques are out of the
scope of this text.

Ultrasound perfusion imaging (Dynamic Contrast-Enhanced Ultrasonography –
DCE-US) is also based on administration of an exogenous contrast agent. Ultrasound
contrast agents are gas-filled microbubbles of the size of several micrometers. The
contrast mechanisms have been known from 1968 [25]. Ultrasound contrast agents
were commercially available since 1991 (Echovist, Bayer Shering Pharma AG).
Nonlinear properties of microbubbles are used in various contrast imaging modes
of ultrasonographs. The main domain of contrast agent use in ultrasonography
is cardiology where it has been used for better delineation of the heart cavities.
There are two main approaches in ultrasound perfusion imaging: bolus tracking
and burst-replenishment.

Bolus-tracking methods are similar to the above mentioned 𝐻15
2 𝑂 PET, CT and

DCE/DSC-MRI perfusion imaging methods based on administration of a contrast-
agent bolus. Bolus-tracking ultrasound perfusion imaging has been first used in
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2000 for assessment of myocardial perfusion [26] and in brain perfusion [27].
Burst-replenishment methods assume continuous infusion of a contrast agent

with intermittent applications of high-energy ultrasound pulses which destroy the
microbubbles in the imaging plain. The following replenishment of the contrast
agent is imaged and analyzed. Burst-replenishment ultrasound perfusion imaging
has been first reported in 1998 for myocardial perfusion [28].

1.2 Basic pharmacokinetic models

In this section, pharmacokinetic modeling as the core of perfusion imaging will
be shortly described. In pharmacokinetic modeling, a tissue ROI is treated as a
perfusion unit with an arterial input, venous output and the microvascular segment
in between (Fig. 1.2). Only tissue ROIs with small vessel size are assumed so
that the vessels can be viewed as a statistical set of randomly organized structures
[29]. This limits the vessel size to the maximum diameter of several hundreds 𝜇m,
corresponding to small arteries, arterioles, capillaries 2, venules and small veins [30].

Arterial

input
Venous

output

Cells

Intravascular spaceTissue ROI:

Extravascular

extracellular space

Fig. 1.2: Schematic of a perfusion unit assumed by pharmacokinetic models.

The ROI consists of the intravascular and the extravascular extracellular space
(EES)3 and the intracellular space. As this text is focused on ultrasonography- and
MRI-based perfusion imaging, only the contrast agents used with these modalities
will be considered further on. Ultrasound contrast agents remain only in the
intravascular space, due to their large size on the order of micrometers, and do not
diffuse through the vessel wall. Hence the term non-diffusible contrast agents. Thus,
only the intravascular space needs to be modeled in this case.

2A specific case is DSC-MRI based on 𝑇2-weighted acquisition which is sensitive predominantly
to the signal from capillaries but not from larger vessels; this property is related to the nature of
the acquisition process.

3This term is used in literature on perfusion imaging, although it is not accurate, as it could also
include other volumes which are not captured by the pharmacokinetic models, such as lymphatic
vessels, brain ventricles, etc. – the term interstitial space would be more appropriate.
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On the other hand, MR contrast agents are much smaller and extravasate to
the EES. Thus, MR contrast agents are referred to as diffusible contrast agents. It
is also a known fact that MR contrast agents do not diffuse further into the cells.
Hence, in MR perfusion imaging the intravascular space and the EES are modeled.
An exception is brain imaging with intact blood brain barrier, which makes the
vessel wall impermeable also for MR contrast agents. This is mostly the case of
DSC-MRI in stroke.

A perfusion unit, described using a pharmacokinetic model, is assumed to be a
linear stationary system [31]. An ”input signal” of the modeled perfusion unit is
the so called Arterial Input Function (AIF). It is the arterial input in Fig. 1.2, i.e.
the time course of the contrast-agent concentration in the arterial input of the ROI.
As the intravascular distribution volume, accessible to the contrast agent, is blood
plasma, AIF is usually expressed as the contrast-agent concentration in plasma,
𝑐𝑝(𝑡). In the most perfusion imaging techniques, the AIF is assumed to be known,
either from literature (population-based models) or from a measurement in some
large artery (see below).

A straightforward interpretation of Fig. 1.2 assigns the output of the perfusion
unit to the time course of the contrast-agent concentration in the venous output,
𝑐𝑣(𝑡). However, this signal is not accessible for measurement (as the size of these
single draining vessels is far below the achievable spatial resolution). However, it
is instructive to stay at this formulation of the system’s output. In this case, the
output is given as

𝑐𝑣(𝑡) = 𝐹𝑝(𝑐𝑝 * ℎ)(𝑡). (1.1)

The scaling constant 𝐹𝑝 is flow of blood plasma (defined as plasma flow per unit
tissue volume), see Tab. 1.1 for overview of perfusion parameters. The symbol * is
time-domain convolution, The function ℎ(𝑡) is the so called transport function. In the
theory of systems, ℎ(𝑡) is the perfusion-unit’s impulse response function. Another
interpretation of ℎ(𝑡) is the probability distribution of contrast-agent-particle transit
times. The expectation of ℎ(𝑡) is the mean transit time of contrast-agent particles
through the perfusion unit. The function ℎ(𝑡) acts as a propagator through the
perfusion unit. [31]

In perfusion imaging, the measured signal, i.e. the ”output signal” of the
perfusion unit, is the time course of the contrast-agent concentration within the
tissue ROI, 𝑐𝑡(𝑡), not in its venous output 𝑐𝑣(𝑡). Hence, the impulse response of
the perfusion unit is referred to as Impulse Residue Function (IRF), 𝑅(𝑡) [31],
sometimes also called impulse response function. It is interpreted as the probability
that the contrast-agent particle is present in the perfusion unit at time 𝑡 following
an instantaneous bolus of the contrast agent at the arterial input (Dirac-pulse AIF)
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at time 𝑡 = 0. From the definition, it follows that the IRF is a non-increasing
function satisfying 𝑅(𝑡 = 0) = 1. It is related to the transport function as follows:

𝑅(𝑡) = 1 −
∫︁ 𝑡

0
ℎ(𝜏)𝑑𝜏. (1.2)

The contrast-agent concentration within the tissue unit is then expressed as

𝑐𝑡(𝑡) = 𝐹𝑝(𝑐𝑝 * 𝑅)(𝑡). (1.3)

This is the basic pharmacokinetic model used in perfusion-imaging literature. The
pharmacokinetic models differ based on the form of 𝑅(𝑡). In the following text,
different formulations of the IRF, 𝑅(𝑡), will be reviewed. The perfusion parameters
accessible using the different pharmacokinetic models are summarized in Tab. 1.2.

Model Primary perfusion parameters Derived perfusion parameters
Non-diffusible models

Nonparametric 𝐹𝑝, 𝑣𝑝 𝑇𝑐

Compartment 𝐹𝑝, 𝑣𝑝 𝑇𝑐

Plug-flow 𝐹𝑝, 𝑣𝑝 𝑇𝑐

Diffusible models, 1st generation
Tofts 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 𝑘𝑒𝑝

Extended Tofts 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒, 𝑣𝑝 𝑘𝑒𝑝

Patlak 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑣𝑝 -
Diffusible models, 2nd generation

2CX 𝐹𝑝, 𝑣𝑝, 𝑣𝑒, 𝑃𝑆 𝑇𝑐, 𝐸, 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑘𝑒𝑝

TH 𝐹𝑝, 𝑣𝑝, 𝑣𝑒, 𝑃𝑆 𝑇𝑐, 𝐸, 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑘𝑒𝑝

ATH 𝐹𝑝, 𝑣𝑝, 𝑣𝑒, 𝑃𝑆 𝑇𝑐, 𝐸, 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑘𝑒𝑝

DP 𝐹𝑝, 𝑣𝑝, 𝑣𝑒, 𝑃𝑆 𝑇𝑐, 𝐸, 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑘𝑒𝑝

DCATH 𝐹𝑝, 𝑣𝑝, 𝑣𝑒, 𝑃𝑆, 𝜎 𝑇𝑐, 𝐸, 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑘𝑒𝑝

GCTT 𝐹𝑝, 𝑣𝑝, 𝑣𝑒, 𝑃𝑆, 𝛼 𝑇𝑐, 𝐸, 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑘𝑒𝑝

Tab. 1.2: Perfusion parameters estimated using different pharmacokinetic models.
Primary perfusion parameters – one of possible choice of model parametrization
(shows the number of unknown parameters of the given model), derived perfusion
parameters – remaining perfusion parameters that can be derived from the primary
perfusion parameters.

1.2.1 Models for non-diffusible contrast agents

Some perfusion-imaging methods are based on a nonparametric approach, where
a non-parametric IRF is assumed [32]. According to the general pharmacokinetic
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model (Eq. (1.3)), the measured tissue concentration curves, 𝑐𝑡(𝑡), are deconvolved
with the AIF, 𝑐𝑝(𝑡), which yields an estimate of 𝐹𝑝 · 𝑅(𝑡). Regularization, such as
Tikhonov regularization or truncated singular value decomposition, is sometimes
used to deal with the ill-posedness of the deconvolution problem [33].

Then, 𝐹𝑝 is estimated from 𝐹𝑝 · 𝑅(𝑡) as the first sample (because 𝑅(𝑡 = 0) = 1)
or as its maximum. Plasma volume, 𝑣𝑝, (Tab. 1.1) is calculated as the ratio of areas
under the tissue and AIF curves:

𝑣𝑝 =
∫︀ inf

0 𝑐𝑡(𝑡)𝑑𝑡∫︀ inf
0 𝑐𝑝(𝑡)𝑑𝑡

. (1.4)

The mean transit time, 𝑇𝑐, (Tab. 1.1) is derived from 𝐹𝑝 and 𝑣𝑝 according to the
central volume principle [34] as

𝑇𝑐 = 𝑣𝑝/𝐹𝑝. (1.5)

Compared to non-parametric IRF, use of parametric IRF imposes additional
assumptions about the perfusion unit, which can stabilize estimation of the perfusion
parameters by limiting the set of possible solutions. This is however at the cost of
decreased realism of the pharmacokinetic model because each IRF model brings a
certain degree of simplification. The most broadly used parametric IRF models of
the intravascular space (Tab. 1.3) are the compartment and plug-flow models. A
compartment model describes the intravascular space as a well-mixed volume with
a homogeneous contrast-agent concentration. Such model is suitable for a chaotic
microvascular structure with no prevailing orientation of the vessels, such as the brain
microvasculature for example. The dynamics of the contrast-agent distribution
in a one-compartment perfusion unit can be described by a 1st-order ordinary
differential equation. The solution leads to the convolutional model Eq. (1.3) with
𝑅(𝑡) = exp(−𝑡 · 𝐹𝑝/𝑣𝑝) [35]. Fitting this model to the measured signal, 𝑐𝑡(𝑡), yields
estimates of 𝐹𝑝 and 𝑣𝑝 (and 𝑇𝑐 from the central volume principle).

A plug-flow model describes the microvasculature as a tube or a set of parallel
tubes where all particles move with the same velocity. This relates to erythrocytes
acting as ”plugs” because they have a slightly larger size than the lumen of capillaries.
When deformed erythrocytes are passing through the capillaries, they induce the
same velocity of the plasma space between them. A plug-flow model is suitable for
tissues with unidirectionally organized vessels, e.g. some muscle structures. The
IRF of a plug-flow perfusion unit is 𝑅(0 <= 𝑡 <= 𝑇𝑐) = 1 and 𝑅(𝑡) = 0 elsewhere
[35].
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Compartment model
• homogeneous contrast-agent concentration
• exponential IRF

ct(t)

cp(t)

Fp Fp
vp

Plug-flow model
• constant speed of contrast-agent particles
• boxcar IRF

ct(t)

cp(t)

Fp Fp
vp... ...

Tab. 1.3: Pharmacokinetic models for non-diffusible contrast agents.

1.2.2 Models for diffusible contrast agents

This section reviews pharmacokinetic models modeling the contrast-agent distri-
bution within both the intravascular space and the EES. For these models, the
approach of a non-parametric IRF has been used rarely [36]. In Eqs. (1.4), (1.5),
the distribution volume, 𝑣𝑝, of the non-diffusible-contrast-agent case needs to be
replaced by the distribution volume of the diffusible-contrast-agent case being 𝑣𝑝 +𝑣𝑒.
The mean transit time, 𝑇𝑐, in Eq. (1.5) is replaced by the mean transit time of
contrast-agent particles through the whole perfusion unit including the EES.

Parametric IRF models of diffusible contrast agents are of various degrees of
complexity. As for the intravascular space, some models assume this space has
negligible contribution and do not model it, e.g. the Tofts model [21, 37]. In the
extended Tofts or the Patlak models, the intravascular signal is included but the
structure of the intravascular space is not modeled (as it is irrelevant for the assumed
high-flow conditions) [36]. These models are referred to as 1st-generation models
(Tab. 1.4), dating back to the 1990s, where the quality of acquired MRI data was
not sufficient to extract 𝐹𝑝, 𝑃𝑆, 𝑇𝑐 and 𝐸. This became possible later, with the
so called 2nd-generation models, such as the 2CX, TH, ATH, DP, DCATH and
GCTT models (see Tab. 1.5 for the full names, schematics and short descriptions).
These models are based on a compartment or plug-flow model of the intravascular
space and on a compartment or distributed-parameter model of the EES. The
advantage of the 2nd-generation models is that they provide a more complete set of
perfusion parameters than the 1st-generation models. For example the perfusion
parameter 𝐾𝑡𝑟𝑎𝑛𝑠 provided by the 1st-generation models is affected by both plasma
flow, 𝐹𝑝, and the permeability-surface area product, 𝑃𝑆 (describing the ”leakiness”
of the vessel wall for the contrast agent). Hence, the 1st-generation models do
not allow differentiating the effects of blood flow and permeability. Separating
the flow and permeability properties gives important information about the tissue
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microvasculature state. This is provided by the 2nd-generation models. On the
other hand, the 2nd-generation models are more complex and require better data
quality.

A thorough description of the pharmacokinetic models is beyond the scope of
this introduction. The reader can refer to several reviews on this topic [31, 36, 38].

Tofts model
• only EES assumed
• EES modeled as a compartment

ct(t)

cp(t)

ve

Ktrans

Extended Tofts model
• vascular signal considered
• structure of the intravascular space not modeled (high

plasma flow assumed)

ct(t)
cp(t)

ve

vp Ktrans

Patlak model
• vascular signal considered
• structure of the intravascular space not modeled (high

plasma flow assumed)
• backflux from the EES to the vascular space neglected

(uptake model)

ct(t)
cp(t)

EES: 

vp
Ktrans

Tab. 1.4: First-generation pharmacokinetic models for diffusible contrast agents.
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2-Compartment eXchange (2CX) Model
• intravascular space modeled as a compartment
• EES modeled as a compartment

ct(t)

cp(t)

Fp Fp
vp

ve

PS

Tissue-Homogeneity (TH) model
• plug-flow model of the vascular space
• EES modeled as a compartment
• no analytic time-domain expression of the IRF, 𝑅(𝑡),

only frequency-domain expression available

ct(t)

cp(t)

Fp Fp

vp... ...

......

ve

PS

Adiabatic approximation of the Tissue Homogene-
ity model (ATH)

• plug-flow model of the vascular space
• EES modeled as a compartment
• assumption of much faster intravascular contrast-

agent dynamics compared to the dynamics in the
EES

ct(t)

cp(t)

Fp Fp
vp... ...

ve

PS

Distributed-Parameter (DP) model
• plug-flow model of the vascular space
• distributed model of the EES
• contrast-agent exchange only between the correspond-

ing intravascular-space and EES units
• no exchange (diffusion) between the neighboring EES

units assumed

ct(t)

cp(t)

Fp Fp
vp... ...

ve... ...

......PS

Distributed-Capillary Adiabatic Tissue Homogene-
ity (DCATH) and Gamma Capillary Transit Time
(GCTT) models

• as the ATH model but multiple intravascular paths
with different transit times assumed

• additional perfusion parameter describing the statis-
tical distribution of the mean capillary transit times

...

...

...

ct(t)

cp(t)

Fp Fp
... ...

... ...

ve

PS

vp

Tab. 1.5: Second-generation pharmacokinetic models for diffusible contrast agents.
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1.3 Main problems

Perfusion imaging using MRI and ultrasonography have been known since the
1980th / late 1990th. However, in the most clinical applications, current perfusion
imaging methods are not sufficiently reliable for routine clinical use, where they
remain mostly at the experimental level. Due to the vast variability of the available
methods and due to their poor reproducibility among different scanners and scanner
setups, there is a lack of standardization of the perfusion-imaging procedures. The
situation is even worse in preclinical use, with a substantially smaller number of
users, and hence lower business profit and interest of the scanner vendors.

One exception, in MRI, is DSC-MRI in stroke patients. Although the majority
acute stroke examinations are made using CT, DSC-MRI is an officially approved
standardized option, used in advanced medical imaging centers.

The Main reasons for the prevailing experimental character of perfusion imaging
with MR and ultrasonography can be summarized as follows.

• There is still a dominating tendency to use simplistic semi-quantitative meth-
ods where the estimated perfusion parameters depend on the contrast-agent
administration, on the properties of the proximal arterial system of the patient
and on the scanner and its setup.
This clearly leads to the need for fully quantitative perfusion imaging methods.
These methods model the shape of the contrast-agent bolus entering the
analyzed tissue ROI (perfusion unit), i.e. the AIF, which captures the influence
of the contrast-agent administration process and the influence of the arterial
tree proximal to the tissue ROI. This means that the convolutional model
(Eq. (1.3)) needs to be the model of choice in quantitative perfusion imaging.

• Related to the previous point is the need for accurate estimation of the AIF.
The AIF is commonly considered equal for all voxels of the examined tissue
(global AIF). In most studies, it is measured (extracted from the acquired
image sequence) in a big artery or taken as a parametric population-based AIF
from literature. In MRI, the measured AIF is distorted by flow artifacts, partial
volume effects, saturation, 𝑇 *

2 effects and dispersion of the contrast-agent bolus
between the AIF measurement location and the examined tissue. In DCE-US,
deriving the AIF from an arterial ROI in the measured image sequence is an
even more problematic task than in MRI, mainly due to attenuation of the
contrast agent (dependent on the contrast-agent concentration, i.e. changing
throughout the acquisition time). In addition, similar problems as in DCE-
MRI arise: motion artifacts, low spatial resolution, blood-velocity dependence
of the backscattered signal and dispersion of the contrast-agent bolus.
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On the other hand, use of a population-based AIF, as another possibility to
determine the AIF, ignores the differences in the vascular tree between different
individuals and depends on the acquisition protocol and the contrast-agent-
administration procedure used when these ”standard” AIFs were established.

• In DCE-MRI, still mostly 1st-generation pharmacokinetic models are used.
As mentioned above, they provide ambiguous information concerning the
common parameters 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑘𝑒𝑝 which mix together the effects of plasma
flow and vessel wall permeability without a chance to distinguish between
them. Furthermore, these models are too simplistic for many tissue types and
lead to biased perfusion-parameter estimates.
A solution is to use more complex, 2nd-generation, models. However this leads
to higher demands on the temporal resolution and signal-to-noise ratio (SNR),
often ill-conditioned model fitting and higher sensitivity to the accuracy and
precision of the AIF. Hence these models are still not much used.
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2 CONTRIBUTION OF THE AUTHOR’S TEAM

The general aim of our group concerning both ultrasound and MRI perfusion imaging
was and is to contribute to reliable quantitative perfusion analysis that gives accurate
perfusion parameters independent of the contrast-agent-administration procedure,
image-data acquisition methods and their setup, and the subject-specific properties
of the arterial tree proximal to the ROI. Achieving this helps to bring ultrasound
and MRI perfusion imaging closer to routine clinical practice and improve the
diagnostics in many clinical and preclinical applications.

In the following text, our contribution is described more specifically, split into
items. In most cases, an item corresponds to 1 or 2 journal paper(s) (co)authored
by our group, possibly accompanied by our related conference contributions. The
main journal papers, constitute attachments of the habilitation thesis.

2.1 Ultrasound perfusion imaging

The author believes that his group has contributed to introduction of quantitative
perfusion imaging into DCE-US to replace the semi-quantitative methods. As
pointed out earlier, the majority of DCE-US was done in a semi-quantitative
manner.

The burst-replenishment DCE-US method is a semi-quantitative approach by
nature, unless the parameters of the replenishment-curve model are scaled with
respect to the arterial signal (as an analogy to the AIF in the bolus-tracking
methods). To the author’s knowledge, at the publication time of our first papers in
DCE-US [39, 40, 41] (2010-2013), there were only three papers of two groups on
quantitative burst-replenishment DCE-US (with normalization with respect to the
arterial signal) [42, 43, 44], all applied to cardiac perfusion imaging.

A similar situation was present in bolus-tracking DCE-US. To the author’s
knowledge, at the publication time of our first papers in DCE-US there were two
papers of one group [45, 46] using the convolution model Eq. (1.3) for estimation
of the mean transit time, 𝑇𝑐, and slightly later, in 2012, another group published
a convolution-based approach where all three available perfusion parameters were
estimated (𝑇𝑐, 𝐹𝑏, 𝑣𝑏) [47, 48].

The main contribution of our group in the field of DCE-US can be summarized
as follows.

• We have introduced deconvolution-based perfusion imaging to bolus-tracking
DCE-US and validated the methodology on a flow phantom [39, 49] and on
pig’s heart [50].
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• We have newly formulated the standard burst-replenishment DCE-US method,
using the convolutional formalism (i.e. using the convolution model Eq. (1.3)).
This made it possible to combine the burst-replenishment approach with
deconvolution-based bolus-tracking. In this combined approach, we called
Bolus & Burst, the contrast agent is administered as a bolus and image
data recorded as in the bolus-tracking method, but in addition, during the
same image-recording session a high-energy burst is applied in the later slow-
dynamics phase. Simultaneous processing of the bolus and replenishment
signals leads to more robust perfusion analysis than processing of the bolus
or replenishment signals alone. Having the bolus and replenishment signals
interconnected through the convolutional model represents sufficient informa-
tion to estimate the AIF together with the IRF (parametrized by the sought
perfusion parameters 𝑇𝑐, 𝐹𝑏, 𝑣𝑏). This approach is called blind deconvolution –
”blind” because both components of the convolution (Eq. (1.3)) are unknown.
This approach avoids the problems connected to measuring the AIF or using
population-based AIFs (see above). The author considers the Bolus & Burst
method as the core of our contribution in DCE-US. We have published the
methodology paper as [40] (Paper I of this habilitation thesis).

• We have extended our original Bolus & Burst method with a more accurate
model [51]. In [41] (Paper II of this habilitation thesis), we have validated this
extended Bolus & Burst method on clinical data from Crohn’s disease patients
where we have shown that it could be used as a treatment-stratification
method for patients with Crohn’s disease, particularly to distinguish between
inflammatory and fibrous wall thickening of the gastrointestinal tract.

• The Bolus & Burst method was further tested on patients with exocrine
pancreatic failure [52]. Interobserver agreement for repeated recordings using
the same ultrasound scanner and agreement between results on two different
scanner systems were evaluated.

• Another successful validation study of the Bolus & Burst method was done
on patients with insufficiency of pancreas related to cystic fibrosis and on
healthy volunteers [53].

• The Bolus & Burst processing chain was further extended by automatic
compensation of motion using translational and non-rigid image registration
with a temporal continuity assumption [54].

• We have further developed the Bolus & Burst method by implementing new
AIF models suitable for DCE-US of small animals [55, 56] and illustrated the
method on tumor-bearing mice and compared the results with DCE-MRI [57],
all presented so far as conference proceedings papers.
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2.2 MR perfusion imaging

In MR, convolution-based quantitative perfusion imaging has been more common
than in ultrasonography. The main focus of our group has been DCE-MRI. Here,
the most widely used pharmacokinetic models are the 1st-generation models, such
as the Tofts and extended Tofts models. Our contribution was towards reliable
DCE-MRI based on 2nd-generation models.

Our main effort was focused on accurate estimation of the AIF, which avoids
the problems connected to measured or population-based AIFs. The main approach,
similarly to our DCE-US work, was blind deconvolution, where both the IRF
and AIF are estimated from the measured tissue concentration curves. Blind-
deconvolution estimation of the AIF was proposed by the group of Edward DiBella
(Univ. of Utah, USA) [58, 59, 60], with applications in DCE-MRI using 1st-
generation pharmacokinetic models. At approximately the same time, the group
of Torfinn Taxt (Univ. of Bergen, Norway) introduced blind-deconvolution AIF
estimation into DSC-MRI [61, 62, 63]. Having a close cooperation with Torfinn Taxt
and his group (and later partly with DiBella’s group), we have built on this work.
Together with Torfinn Taxt and his colleagues, we have applied blind-deconvolution
AIF estimation to DCE-MRI using 2nd-generation pharmacokinetic models. Use
of 2nd-generation models is more sensitive to the accuracy of AIF estimation and
presents a more difficult problem than use of the 1st-generation models.

The main contribution of our group in DCE-MRI can be summarized as follows.
Estimation of the AIF using blind deconvolution:
• We have proposed blind-deconvolution AIF estimation method with 2nd-

generation pharmacokinetic models and a nonparametric AIF [64, 65] and
validated them on DCE-MRI recordings from mice with induced muscle
inflammation.

• DCE-MRI data processing and analysis based on blind deconvolution from
the previous point was the core of our part in two major preclinical stud-
ies on tumor-bearing rats and the effects of antiangiogenic treatment with
bevacizumab [66, 67]. The experimental setup and analysis methods, includ-
ing our perfusion-imaging methodology, have revealed new insights into the
physiological background of the treatment processes.

• We have further extended the above mentioned blind-deconvolution AIF
estimation to use a semi-parametric AIF (initial rapidly changing part of the
AIF was left nonparametric, while the ”tail” was mathematically modeled),
leading to more accurate AIF estimates [68]. The method was validated on
recordings from mice with induced muscle inflammation.
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• We have also contributed to blind-deconvolution AIF estimation with fully
parametric AIF models to further constrain the AIF estimation process (used
in connection with 2nd-generation pharmacokinetic models). In [69] (Paper
III of this habilitation thesis), we have proposed such method for clinical
DCE-MRI and validated it on renal-cell-carcinoma patients. In [70] (Paper
IV of this habilitation thesis), we have proposed such method with an AIF
model tailored to small-animal DCE-MRI and validated it within a study on
tumor-bearing mice.

• the above mentioned blind deconvolution method with semi-parametric AIF
was applied on a longitudinal preclinical study where the time development
of bevacizumab’s effects was studied at several time points during the treat-
ment [71] (Paper V of this habilitation thesis). With our perfusion-imaging
methodology we have contributed to gain new insights into the dynamics of
the treatment effect.

Other topics:
• We have proposed a new estimation scheme for an advanced 2nd-generation

model (DCATH) with a continuous formulation of all perfusion parameters,
including the bolus arrival time, thanks to its estimation in the frequency
domain [72]. This allows us to use standard gradient-based optimization
algorithms in pharmacokinetic-model fitting of the tissue concentration time
sequences. In addition to perfusion parameters, we have estimated also their
confidential intervals. We have newly proposed a method for estimation of the
confidential intervals of the perfusion parameters derived from the primary
ones parametrizing the IRF.

• To increase the robustness of DCE-MRI with 2nd-generation models, we have
incorporated spatial regularization into pharmacokinetic-model fitting. Hence,
the model-fitting process was not done separately for each voxel, as usual,
but simultaneously for all voxels with induced similarity of the neighboring
voxels, based on the (edge-preserving) total variation (TV) regularization [73],
(Paper VI of this habilitation thesis).
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3 CONCLUSIONS

Our main contribution to ultrasound and MRI perfusion imaging was in fully
quantitative perfusion analysis, as a means of reliable measurement of perfusion
biomarkers, reproducible across different imaging scanners and differences in their
acquisition setup (and independent of patient-specific arterial-tree properties). We
have been pursuing the idea of treating ultrasonography and MRI not only as an
imaging tool but rather as measuring devices.

In this respect, our main contribution in DCE-US was introducing a novel
method, Bolus & Burst, which combines the bolus tracking and burst-replenishment
methods, both formulated using convolution-based pharmacokinetic models. The
perfusion-analysis process is performed using blind deconvolution which avoids the
need for measurement of the AIF. This makes Bolus & Burst robust with respect
to estimation errors due to AIF-measurement artifacts.

In DCE-MRI, we have followed the same idea of avoiding the need to measure
the AIF by the use of blind-deconvolution, with a special focus on the use of
2nd-generation pharmacokinetic models, where the requirements on the accuracy
and precision of AIF estimates are higher than for the more commonly used 1st-
generation pharmacokinetic models. We have also contributed to improved reliability
of perfusion analysis using 2nd-generation pharmacokinetic models by proposing a
proper continuous formulation of the pharmacokinetic model and by introducing
edge-preserving spatial regularization into the perfusion analysis.

The topic of perfusion analysis has been the core of several successfully defended
bachelor, diploma and Ph.D. theses led by the author and several related theses
led by his colleagues. The topic of perfusion imaging has been also introduced into
several courses at Brno University of Technology, Dept. of Biomedical Engineering.

Our work in the field of quantitative perfusion analysis brought us in closer
contact with broader national and international scientific community, often thanks
to our long-term cooperation with Torfinn Taxt from University of Bergen, Norway.
Our cooperation with the Institute of Medicine, University of Bergen, Norway and
the National Centre of Ultrasound in Gastroenterology at Haukeland University
Hospital, Bergen, Norway (Odd Helge Gilja, Kim Nylund, Trond Engjom) has
been very fruitful in sense of validation of our DCE-US Bolus & Burst method on
actual clinical applications. Our cooperation with the Department of Biomedicine,
University of Bergen, Bergen, Norway (Rolf Bjerkvig, Eskil Eskilsso, Nina Obad)
and the Luxembourg Institute of Health (Olivier Keunen) has helped us to apply
our MR perfusion-analysis methods to actual problems in search for antiangiogenic
cancer treatment. Finally, we have also started active cooperation with the group of
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Edward DiBella, University of Utah, USA, in the field of DCE-MRI of myocardium
[74]. This field represents a challenge due to complicated acquisition connected to
cardiac and respiratory motion and it is one of our future orientations.

The increasing number of interested users of our perfusion-imaging methods has
brought us to development of an online tool for perfusion analysis, called PerfLab
http://perflab.cerit-sc.cz/, currently implemented as a prototype version. It
is designed as a web-based database of studies, datasets and batches of perfusion
analyses, providing a step-by-step perfusion analysis of DCE-US and DCE-MRI data.
The web-based graphical user interface guides the user in entering the processing
parameters, drawing ROIs, plotting of their concentration curves, browsing through
the image sequences in each processing step and previewing of the resulting perfusion
maps. The web-based character of PerfLab avoids the need for installation of any
software, except for the web browser. For clinical users, the data can be imported
through the service ReDiMed (https://www.medimed.cz/en/redimed) directly
from the radiology workstation. Import of the DCE-US/DCE-MRI data is available
for several clinical and preclinical scanners. PerfLab has been partly tested by
our colleagues at the University of Bergen, Luxembourg Institute of Health and
Stanford University. Our further development of this online software tool is directed
towards thorough evaluation on clinical and preclinical data, dissemination and
possibly future research and/or commercial use.

The current research focus of our group extends the above described work in
several directions. First, we have implemented modern compressed-sensing DCE-
MRI acquisition schemes based on sparse data sampling and spatially regularized
image-sequence reconstruction to overcome the limits of standard MRI acquisition
given by the Nyquist theorem [75, 76]. This approach provides increased spatial
and/or temporal resolution or improved spatial coverage of the organ of interest.
The spatial-regularization term can also be learned using modern deep-learning
approaches, to provide even higher efficiency of the acquisition/reconstruction
process which is a further natural extension of the compressed-sensing techniques.

On the level of applications (of DCE-MRI), the above described perfusion-
analysis acquisition/processing methodology becomes more challenging when applied
in the fields of cardiology and stroke imaging, where we intend to extend our know-
how and hopefully contribute to the current state of the art. In cardiology, the
main challenge is to synchronize the data acquisition process with the cardiac and
respiratory motion while acquiring enough data for reliable image reconstruction
and subsequent perfusion analysis. In stroke imaging, the main challenge is the
low SNR of DCE-MRI data due to the blood brain barrier (preventing the contrast
agent from extravasation) but allows quantification of subtle blood-brain-barrier
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disruption [77, 78].
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Ultrasound Perfusion Analysis Combining 
Bolus-Tracking and Burst-Replenishment
Radovan Jiřık, Kim Nylund, Odd Helge Gilja, Martin Mézl, Vratislav Harabiš, Radim Kolář,  

Michal Standara, and Torfinn Taxt

Abstract—A new signal model and processing method for 
quantitative ultrasound perfusion analysis is presented, called 
bolus-and-burst. The method has the potential to provide ab-
solute values of blood flow, blood volume, and mean transit 
time. Furthermore, it provides an estimate of the local arterial 
input function which characterizes the arterial tree, allowing 
accurate estimation of the bolus arrival time. The method com-
bines two approaches to ultrasound perfusion analysis: bolus-
tracking and burst-replenishment. A pharmacokinetic model 
based on the concept of arterial input functions and tissue 
residue functions is used to model both the bolus and replen-
ishment parts of the recording. The pharmacokinetic model 
is fitted to the data using blind deconvolution. A preliminary 
assessment of the new perfusion-analysis method is presented 
on clinical recordings.

I. Introduction

Perfusion imaging is an important method for diag-
nosis and therapy monitoring in ischemic and onco-

logic illnesses. It is also a promising tool for discrimination 
between cancer and inflammation [1]. One of the first in-
dications of quantitative ultrasound perfusion analysis [or 
dynamic contrast enhanced ultrasonography (DCE-US)] 
was in echocardiography, for the assessment of myocardial 
perfusion. In contrast to other imaging modalities used in 

perfusion analysis, ultrasound imaging has the advantage 
of being real-time and it is a low-cost application. On the 
other hand, ultrasound images are often of poor quality 
and suffer from many artifacts (e.g., attenuation) which 
make quantitative perfusion analysis difficult.

The basic idea of perfusion imaging is to record the 
time-dependent change of the contrast-agent concentration 
in a tissue of interest following intravascular administra-
tion. Ultrasound contrast agents (gas-filled microbubbles) 
do not leak into the extravascular space. For such contrast 
agents, blood flow, Fb, blood volume, Vb, and mean tran-
sit time (MTT) can be estimated. Currently, two main 
approaches are used for quantitative ultrasound perfusion 
analysis: burst-replenishment and bolus-tracking.

The burst-replenishment (reperfusion) method [2] is 
widely used in experimental research. The application 
fields cover mostly myocardial perfusion [2], [3], but also 
cerebral [4], renal [5], [6], and liver perfusion [7]. The con-
trast agent is administered as an infusion. This technique 
is based on bubble destruction in the analyzed region of 
interest (ROI) using one or several pulses with high me-
chanical index (MI), usually around 1, followed by low-MI 
imaging sensitive to microbubbles (e.g., pulse inversion, 
power modulation, or power modulated pulse inversion 
imaging [8]).

The reperfusion time curve acquired after bubble de-
struction can be modeled as an increasing exponential 
function or a more complex function [6], [9], [10]. The 
maximum of the curve, A, is proportional to the fractional 
blood volume, Vb. Using the estimate of the exponential-
function time constant, β, the quantity Aβ is proportional 
to the blood flow per tissue volume.

The problem with this approach is that the quantities β 
and Aβ are only proportional to the perfusion parameters. 
The proportionality constants are unknown and depend 
on many factors (e.g., infusion dosage and rate, clearance 
of the contrast agent, settings of the ultrasound scanner, 
and attenuation) which vary between examinations and 
also within the image (attenuation). To our knowledge, 
the only DCE-US approach providing absolute values of 
the perfusion parameters is based on the method proposed 
in [11], in which the additional information for absolute 
quantification is the image intensity in the blood pool 
(ROIs placed in the ventricle). However, this approach 
has been used only in cardiology so far [12], [13].

Bolus-tracking is an acquisition technique in which the 
tracer concentration curves are measured during the pas-
sage of a contrast agent bolus. The analysis of the image 
intensity curves (mean image intensity within tissue ROIs 
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versus time) allows estimation of several semiquantita-
tive tissue parameters (e.g., peak intensity, area under the 
curve, time to peak) [14], [15] or quantitative parameters 
(e.g., local diffusion-related parameter and mean transit 
time [16]), which are related to real physical perfusion 
parameters. The problem with most of the present bolus-
tracking methods (except for [16] and [17]) is that the 
delay and shape of the time-concentration curve in the 
local arterial input of the tissue [called the arterial input 
function (AIF)] are ignored. This leads to a nonunique 
interpretation of the estimated parameters because they 
mix the effect of the AIF and the tissue perfusion pa-
rameters. Furthermore, it limits the reproducibility of the 
method because the AIF is determined by the bolus ad-
ministration and is also dependent on the patient-specific 
vascular tree.

In this paper, a combination of the bolus-tracking and 
burst-replenishment methods is proposed, called bolus 
and burst. It takes advantage of the simpler contrast-
agent application in bolus-tracking and the possibility of 
absolute quantification of physical perfusion parameters 
in the burst-replenishment method. In addition, by utiliz-
ing information from both the bolus-tracking and burst-
replenishment data, our method can provide potentially 
more robust MTT estimates than a standard replenish-
ment technique. The proposed bolus-and-burst acquisition 
is based on bolus administration of the contrast agent. 
Low-MI imaging pulses are used to record the bolus-phase 
sequence. In the later wash-out phase of the bolus, when 
the tracer concentration decays rather slowly, a high-in-
tensity ultrasound pulse sequence is applied to the imaged 
region to destroy the contrast agent in the imaging plane. 
The following replenishment phase is recorded using low-
MI imaging pulses for a time interval of about 30 s. Dur-
ing this phase, a constant infusion-like state is assumed. 
The final phase, in which the contrast-agent concentra-
tion decays, is excluded from the replenishment phase to 
keep this assumption approximately valid. In [18]–[20], 
similar acquisition schemes combining the bolus-tracking 
and burst-replenishment methods have been published. 
However, only the replenishment part was used for esti-
mation of A and β, (and absolute blood velocity derived 
using the imaging-plane width), and the bolus phase was 
used for normalization of A [19] or correction of the decay 
phase [18].

To allow estimation of physical perfusion parameters 
(blood volume, blood flow, and MTT), the pharmacoki-
netic models of the two methods are reformulated and a 
new estimation method is suggested. The bolus-tracking 
part is modeled as in perfusion analysis of other modali-
ties [positron emission tomography (PET), single-photon 
emission computed tomography (SPECT), computed to-
mography (CT), and magnetic resonance imaging (MRI)], 
where the AIF is measured, estimated, or known as a pop-
ulation-based curve. According to [8], this has not been 
applied in ultrasound perfusion analysis. Only recently, 
two studies on this approach have been published [17], 

[21]. Measurement of the AIF in a blood pool, as done in 
[17], [21], is difficult in DCE-US because of attenuation 
and low spatial resolution of ultrasound images. Here, the 
need for an AIF measurement is avoided by estimating it 
using the burst-replenishment part of the recording. To 
do this, the replenishment phase is modeled in terms of a 
known AIF and the tissue residue function. In addition to 
the perfusion parameters, the new approach provides an 
estimate of the local AIF, which characterizes the arterial 
tree.

II. Pharmacokinetic Model

The pharmacokinetic model for the bolus part is known 
from PET, SPECT, CT, and MRI [22], [23]:

	 C t F t R tbolus bAIF( ) ( ) ( ).= ∗ 	 (1)

Cbolus(t) is the contrast-agent concentration in the ROI, ∗ 
stands for convolution, Fb is the blood flow per unit tissue 
volume (in milliliters per minute per milliliter of tissue), 
AIF(t) is the contrast agent concentration in the arterial 
input of the ROI and R(t) is the dimensionless tissue resi-
due function, i.e., the fraction of the contrast agent re-
maining in the analyzed tissue ROI at time t after an in-
stantaneous contrast agent bolus into the tissue ROI [i.e., 
a Dirac delta function as AIF(t)]. The function R(t) is a 
monotonic decreasing positive function starting at 1 [i.e., 
R(0) = 1] [23].

For a one-compartment model of the ROI, R(t) = 
exp (−(Fb/Vb)t), where Vb is the blood volume per unit 
tissue volume (in milliliters per 100 mL of tissue) [22], [23].

The new formulation of a pharmacokinetic model for 
the replenishment phase is based on the assumption of a 
step-function character of the AIF, i.e., zero before the 
replenishment part (meaning all microbubbles have been 
destroyed) and constant during the replenishment part, 
meaning a constant infusion-like input. The step-function 
AIF leads to a modified version of (1):

	 C t FC H t R tbrepl( ) ( ) ( ),= ∗0 	 (2)

where Crepl(t) is the contrast agent concentration in the 
ROI, C0 is the contrast agent concentration in the arterial 
input of the ROI at the plateau [equal to the AIF(t) from 
(1) at the plateau i.e., before the high-energy pulse se-
quence], and H(t) is a Heaviside (unit) step function (zero 
before and one during the replenishment phase). This 
model of replenishment is general and does not impose 
any constraints to the microvascular tree within the ROI.

For a one-compartment model of the ROI, where R(t) 
= exp (−(Fb/Vb)t) as for the bolus part, the monoexpo-
nential model in [2] is obtained (see Appendix A for deri-
vation):

	 C t A e t
repl( ) ( ),= − −1 β 	 (3)
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where A = VbC0 and β = Fb/Vb, which agrees with the 
known formulation, e.g., [11]. Hence, in this model, A is 
proportional to blood volume (or cross-sectional blood 
area) and Aβ is proportional to blood flow.

III. Signal Processing

Standard preprocessing is needed to estimate tracer 
concentration curves for each ROI from the DCE-US re-
cording, including linearization of video data and ROI se-
lection, see e.g., [24].

Having the tracer concentration curves k · C(t) for each 
ROI (where k is a scaling constant determined by the im-
aging ultrasound scanner, bolus dose, and attenuation), 
they must be split into the bolus part, k · Cbolus(t), and 
the replenishment part, k · Crepl(t). Then, the models [(1) 
and (2)] are fitted to the curves as described subsequent-
ly. This model fitting provides an estimate of R(t), using 
R(0) = 1.

A. Parameter Estimation

The tissue residue function R(t) can be estimated ei-
ther as a nonparametric curve (constrained to be positive-
valued and monotonic decreasing, in accordance with the 
physical model) or as a parametric (here one-compart-
ment) approximation. In both cases, R(t) gives an esti-
mate of MTT, because MTT =  R t t( )

0

∞
∫ d  for the non-

parametric model of R(t) [22] and for the one-compartment 
model R(t) = exp (−(Fb/Vb)t), where MTT = Vb/Fb.

Subsequently, Vb can be estimated according to the 
formula used in perfusion imaging with other modalities 
[22], [23]

	 V r
C t t

t t
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−
−
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∞
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∫

1
1

0

0

Hct
Hct

d

AIF da

�

�

( )

( )
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where C(t) is the contrast agent concentration in the tis-
sue ROI following a bolus application, AIFa(t) is the con-
trast agent concentration measured in a big artery feeding 
the ROIs, Hct is the hematocrit in large vessels, and r is 
the ratio between the hematocrit in small and large ves-
sels. Here, C(t) is approximated by the measured tracer 
concentration curve kCbolus(t). Similarly, AIFa(t) can be 
theoretically approximated by the measured arterial trac-
er concentration curve kAIFa(t), assuming the same pro-
portionality constant k as for the tissue ROI. The integral 
k t tAIF da( )

0

∞
∫  in the denominator is a constant for a given 

bolus application in the whole image (although the shape 
of the curve varies slightly with the location in the arte-
rial tree, the integral remains constant, see Appendix B). 
Assuming the integral k t tAIF da( )

0

∞
∫  (later denoted as the 

constant kAIFint) can be estimated using a scaling proce-
dure described later, (4) can be used for estimation of Vb.

Using the central volume theorem [22], the blood flow, 
Fb, is finally calculated as

	 F
V

b
b

MTT= .	 (5)

B. Scaling Procedure

The scaling procedure is the most difficult part of ab-
solute quantification. The scaling constant kAIFint can be 
estimated in several ways.

One option is to select the imaging plane so that an 
AIF ROI can be placed inside a large artery feeding the 
analyzed tissue (e.g., in [11] the AIF ROI was placed in 
the left ventricle close to the myocardium tissue ROIs). 
The constant kAIFint can be set to the integral of the trac-
er concentration curve in the AIF ROI. The drawback of 
this approach is that especially the peak of this measured 
AIF curve is distorted by attenuation, which introduces 
an error. Another problem of measuring a time intensity 
curve in an artery is the dependence of the backscattered 
signal amplitude on blood velocity and pressure (the mean 
of which is different in large arteries and in microcapillar-
ies) [25], [26].

Another approach is to estimate the level of the mea-
sured AIF curve in a short time interval at the tail (cal-
culated e.g., as the area under the curve in this interval) 
where the AIF curve is fairly smooth and the contrast-
agent concentration is fairly small so that the attenuation 
caused by the contrast agent is negligible. At this later 
stage, the contrast agent concentration in the arterial and 
venous tree is the same, hence the ROI could also be se-
lected in a vein instead of a big artery. This later-part AIF 
level can then be imposed to each estimate of AIF(t) in (1) 
in the curve fitting. This imposes an absolute scaling of 
the AIF in the fitting procedure and leads to estimation of 
absolute Fb according to (1). Subsequently, Vb is calculat-
ed according to (5). The drawback of this approach is the 
low signal-to-noise ratio in the later part of the AIF curve 
and blood velocity- and pressure-dependence of the back-
scattered signal, which introduces an estimation error.

The scaling can also be done using a ROI placed in 
a reference tissue with a known value of Fb or Vb (from 
literature or from a reference perfusion imaging with an-
other modality). Then, the constant kAIFint is set to yield 
this known value of Fb or Vb according to (5).

Finally, a standardized acquisition protocol can be used 
with the same setting of the ultrasound scanner (same 
ultrasound power, focal point depth, etc.), a standard-
ized position of the probe and a bolus dose normalized 
with respect to the patient weight. This will allow use of 
a population-based scaling constant kAIFint, in a similar 
way as in blind AIF estimation in DCE-MRI [27]. This 
constant could be found, for example, by acquiring an 
AIF from a nearby feeding artery using a separate re-
cording with a low-contrast-agent bolus (as used in this 
paper later) using the same ultrasound-scanner setting. 
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This approach assumes that the influence of the attenua-
tion caused by tissue is the same in the recordings across 
all patients or corrected for by time gain compensation 
or a more advanced method. Also, for this approach, the 
problem of blood velocity- and pressure-dependence of the 
backscattered signal remains present.

If none of these methods can be used, only the relative 
values of Vb and Fb can be estimated. This approach still 
allows comparison of these perfusion parameters between 
tissues within the ultrasound image.

C. Blind Deconvolution

The models fitted to the bolus and replenishment sig-
nals are convolutional, hence, the curve fitting problem 
can be formulated as a deconvolution problem. The least-
mean-squares curve fitting is used here. This corresponds 
to the maximum likelihood deconvolution for Gauss-
ian noise distribution [28] (used in scheme 1, described 
subsequently). In scheme 2, an additional assumption of 
smoothness and positivity of the AIF is used. This leads 
to the maximum a posteriori (MAP) deconvolution [28]. 
The two deconvolution approaches fall into the deconvolu-
tion group called Bayesian deconvolution [29]. Two curve 
fitting schemes are proposed; scheme 1 is used here for 
initial estimation of R(t) and AIF(t) and these estimates 
are further refined in scheme 2.

•	Scheme 1: A straightforward approach is to use the 
replenishment part to estimate R(t) and subsequently 
to use this estimate and the bolus-part curve Cbolus(t) 
to estimate AIF(t). This would correspond to the 
quantitative parameter estimation using the replen-
ishment method in [11] with the advantage of bolus 
administration instead of infusion, and with an addi-
tional feature estimated for each ROI—the local AIF, 
for the vascular tree characterization.
•	Scheme 2: A more robust approach to estimate R(t) 
and AIF(t) is to apply curve fitting of both the bolus 
and replenishment parts simultaneously, using a blind 
multichannel deconvolution [30]. Here, both parts are 
considered as two independent measurements with the 
same unknown convolutional kernel, R(t), and differ-
ent arterial components of the convolution. The arte-
rial component in the bolus part is an unknown func-
tion FbkAIF(t). In the replenishment part, the arterial 
component is FbkC0H(t), which is a known function 
except for the scaling factor FbkC0. When including 
additional a priori information in the estimation pro-
cess (positivity and smoothness of the AIF), scheme 
2 leads to an estimation scheme which is more robust 
with respect to low signal-to-noise ratio, speckle, and 
movement artifacts.

The blind multichannel deconvolution is formulated as 
the following optimization problem:
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Because of the discrete character of the signals, the time 
variable t is replaced with indices n, m, and p. Denoting 
the signal lengths of the bolus and replenishment parts 
in samples as N and M, respectively, the tissue residue 
function, R(p), is estimated for p = 1…P, where P is 
the maximum of N and M. The first two terms of the 
criterion function, Jbolus and Jrepl, are the maximum-likeli-
hood terms describing the fidelity of the measured signals 
kCbolus(n) and kCrepl(m) to the model. The third term, 
Jprior, is the prior term penalizing high-frequency compo-
nents of AIF(n). The parameter λ is a weighting factor 
affecting the smoothness of the resulting AIF estimation. 
L(n) is the Laplacian operator (high-pass filter) defined 
as a sequence [−1, 2, −1]. This prior term formulation is 
also known as Tikhonov regularization [31]. To provide a 
unique solution of the optimization, the constraint R(0) 
= 1 is applied.

The optimization algorithm used here is the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method 
with a cubic line search procedure [32], [33] as implement-
ed in the Matlab Optimization toolbox (The MathWorks, 
Inc., Natick, MA), function fminunc.

IV. Data and Evaluation Methods

The bolus-and-burst method was tested on data sets 
recorded from 8 patients with Crohn’s disease included in 
a broader clinical study. Group 1 consisted of 5 patients 
operated on because of stenotic disease or failure of medi-
cal treatment. Group 2 consisted of 3 patients starting 
medical treatment because of an acute flare up. The treat-
ment decisions were based on biochemical markers and 
clinical, radiological, and endoscopic examinations, and 
were made before inclusion in the study. The ultrasound 
acquisition was done using GE Logiq E9 ultrasound scan-
ner (GE Healthcare, Milwaukee, WI) with a linear probe 
(9L) to acquire the dynamic sequence using the General 
setting in the contrast mode (power modulation mode, 
probe frequency 3.5 MHz) with the frame rate 11 Hz, col-
or map 2/0, MI = 0.11. Each patient data set consisted 
of two recordings (see Fig. 1 for an example). The artery 
recording was acquired from a region of the right iliac 
artery with a dose of 0.4 mL of SonoVue (Bracco Imag-
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ing S.p.A., Milan, Italy) for approximately 60 s and with 
no high-energy pulses. The tissue recording was acquired 
with a dose of 4.4 mL of SonoVue for approximately 90 s 
with the high-energy pulse sequence applied 60 s after the 
bolus application. The contrast agent was drawn from the 
same vial. The time delay between the two injections was 
5 to 10 min. The length of the replenishment part was set 
to 12 s based on visual assessment of the tracer concentra-
tion curves so that inclusion of the decay part is avoided 
and, at the same time, that the replenishment part is suf-
ficiently long.

In each tissue recording, one ROI was drawn covering 
the anterior wall of bowel, including mucosa, submucosa, 
and muscularis. The average number of pixels in the ROIs 
was 4952. In each artery recording, one ROI was drawn in-
side the artery in the upper (proximal) half of the arterial 
cross section (to minimize attenuation effect). The mean 
intensity time curve was computed from the mean pixel 
intensity within the ROI in each frame. Because the image 
recordings were available as video data, the image intensi-
ty curves were transformed to tracer concentration curves 
(ultrasound intensity, i.e., acoustical units squared) us-
ing the linearization described in [24]. The dynamic range 
and gain values needed for the linearization were obtained 
from the stored ultrasound-scanner settings. An example 
of the tracer concentration curves from the data sets in 
Fig. 1 are shown in Fig. 2. The arterial tracer concentra-
tion curves contained repetitive spikes caused by blood 
flow and pressure pulsation. The signal was filtered using 
order statistic filtering so that every sample is replaced by 
the maximum of the neighboring samples within a float-
ing window. The window size was set experimentally to 15 
samples (1.4 s) to eliminate the blood flow and pressure 
oscillation from the signal. The resulting envelope of the 
signal [see Fig. 2(b)] was used as the reference AIF. The 
choice of this filtering was based on the resulting estimates 
of blood flow in the intestinal wall ROIs being closest to 
the expected values based on the literature, as discussed 
later. This filtering approximately accounted for the dif-

ference in attenuation, blood pressure, and velocity in the 
tissue and artery ROIs. Other alternatives, including me-
dian filtering, minimum of the neighboring samples, and 
low-pass filtering, resulted in blood flow estimates that 
were too high.

The DCE-US data were processed using the one-com-
partment pharmacokinetic model described previously to 
constrain the curve-fitting problem and, hence, to provide 
more robustness with respect to noise, speckle presence, 
and movement artifacts.

The evaluation was done as follows. First, the results 
of the bolus-and-burst method were compared with those 
of the burst-replenishment method to evaluate the noise-
robustness of the two approaches and show their applica-
bility to ROIs of various sizes. The burst-replenishment 
method was applied to the replenishment part of the 
tracer concentration curves, whereas the bolus-and-burst 
method was applied to both the bolus and replenishment 
parts. The tracer concentration curves were obtained from 
a homogeneous well-perfused ROI in the intestinal wall. 
In each experiment, the total number of 608 curves (1 
per pixel) were randomly divided into a specified number 
of groups (here 1, 3, 6, 20, 30, 40, and 60 groups). This 

Fig. 1. Example of (top) tissue and (bottom) artery recordings: (left) 
fundamental-harmonic image, (right) second-harmonic image. RIA de-
notes the right iliac artery.

Fig. 2. Tracer concentration curves. (a) Intestinal wall region of interest 
(ROI) in a tissue recording: (dashed) measured and (solid) fitted curves. 
(b) Right iliac artery ROI in the artery recording: (solid thin) measured, 
(solid thick) filtered, and (dashed) estimated from bolus-and-burst meth-
od; note the regular peaks of the measured arterial tracer concentration 
curve which are due to blood pressure oscillation.
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corresponded to ROIs of 608, 202, 101, 30, 20, 15, and 10 
pixels, respectively. The evaluation was done for MTT. 
Then, the accuracy of the AIF estimation was visually 
evaluated. The measured AIFs were obtained as the tracer 
concentration curves from ROIs in the right iliac artery in 
the 8 artery recordings of the corresponding patients. The 
mean of the measured AIFs was visually compared with 
the mean of the AIFs estimated from the 8 tissue record-
ings of the corresponding patients. Before averaging, the 
AIFs were scaled to a maximum value of 1 and shifted 
manually so that the first-pass peaks overlapped.

Finally, for completeness and illustration purposes, all 
perfusion parameters, MTT, Vb, and Fb, were estimated 
for the intestinal wall ROIs of all 8 patients and related to 
literature values.

The scaling procedure necessary for absolute quantifi-
cation of Vb and Fb was done as described here. The test 
recordings were not sufficiently standardized, in the sense 
that the depth and ultrasound power at the ROI locations 
was very variable (area under the curve of the tracer con-
centration curves varied by a factor of up to 1000 times). 
Hence, the use of a common scaling factor was not pos-
sible. To improve the estimation accuracy, the scaling pro-
cedure was done using the measured AIF of each patient. 
Vb was estimated according to (4), where C(t) was the 
complete tracer concentration curve including both the 
bolus and replenishment parts, except for the time span of 
the high-energy pulse sequence. Hct was set to 0.4 and r 
to 0.7 [34]. Fb was then derived from MTT and Vb using 
(5). In the ideal case, for standardized recordings in which 
the depth and ultrasound power in different acquisitions 
would be comparable, the need for measured AIFs could 
be avoided. Only one such AIF measurement would be 
needed to determine the scaling constant kAIFint.

V. Results

A comparison of the burst-replenishment and bolus-
and-burst methods with respect to the size of the ROI is 
summarized in Fig. 3. For large ROIs (608, 202, and 101 
pixels), both methods gave comparable MTT estimates 
(7.7 s for the burst-replenishment and 7.1 s for the bolus-
and-burst methods) with low standard deviation (1.6 s 
for the burst-replenishment and 1.3 s for the bolus-and-
burst methods). For smaller ROIs, the MTT estimates 
started to deviate from these values. The burst-replenish-
ment method resulted in clearly higher estimation errors 
and higher standard deviation than the bolus-and-burst 
method. Closer inspection of the MTT estimates showed 
that for ROIs of 15 and 10 pixels, the burst-replenishment 
method resulted in several outlier MTT estimates (higher 
than 100 s). No such outlier estimates were obtained using 
the bolus-and-burst method.

Fig. 4 shows the comparison of the measured and esti-
mated AIFs from the 8 clinical recording sets. The mean 
of the measured AIFs and the mean of the estimated AIFs 

[Fig. 4(a)] show a fairly good fit, especially for the first-
pass peak. The second-pass peak of the estimated AIFs 
was slightly higher compared with the measured AIFs. 
The time location of the second-pass peak in both the 
measured and estimated AIFs was approximately the 
same. Fig. 4(b) shows the variability of the measured and 
estimated AIFs as confidence intervals (mean curve ± 
standard deviation). For the first-pass peak, the intervals 
match fairly well; for the second-pass peak, the confidence 
interval of the estimated AIFs was slightly wider.

Table I summarizes the perfusion parameters estimated 
from the two patient groups. For the 5 patients of group 1, 
the values are given as mean ± standard deviation, where-
as for the 3 patients of group 2, the values are given for 
each patient. In [35], blood flow was measured using radio-
isotope washout technique for patients divided into groups 
with characteristics corresponding to the groups used here. 
The blood flow in the intestine wall (including mucosa, 
submucosa, and muscularis) of this study are included in 
Table I. Assuming the density of tissue is approximately 
1 g/mL, the units used here (mL/min/100 mL tissue) and 
in [35] (mL/min/100 g tissue) are equivalent. These lit-
erature values show a fairly wide range depending on the 
physiological state of the tissue.

Fig. 3. (a) Mean and (b) standard deviations of mean transit time 
(MTT) estimates for burst-replenishment and bolus-and-burst methods 
applied to regions of interest (ROIs) of various size.
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Although the number of patients used here in the two 
groups is low for a statistical evaluation, according to 
Table I, the flow values estimated here are clearly higher 
than in [35]. The results also indicate that in line with 
[35] and with physiological expectations, blood flow and 
blood volume are clearly higher for group 2 than for group 
1 with a factor of 4, on average. In [35], the ratio in blood 
flow between the two groups was 6 for colon and 3 for 
ileum examinations.

VI. Discussion and Conclusions

A new multichannel blind deconvolution method for 
ultrasound perfusion analysis is proposed. It is based on 
an acquisition technique combining the bolus-tracking and 
burst-replenishment methods, an acquisition approach al-
ready used in [18]–[20]. Here, the signals corresponding to 
both parts are modeled according to the concepts of an 
AIF and a tissue residue function known from bolus-track-
ing in other imaging modalities. To do this, the model for 
the replenishment part had to be formulated in terms of 
an AIF and a tissue residue function.

The new approach can provide absolute physical perfu-
sion parameters, if one of the proposed scaling procedures 
can be applied. This is possible when a large artery, vein, 
or a reference tissue (with known blood volume or flow) 
is available in the imaged area or in a standardized setup 
with possible population-based scaling. So far, there has 
been only one method providing absolute perfusion param-
eters using a DCE-US burst-replenishment method [11], 
and it was applied only in cardiology. Bolus-and-burst is 
an alternative to this method using a bolus application 
which is easier to apply than an infusion application in 
the burst-replenishment techniques. Furthermore, the pro-
posed scaling procedures also allow absolute quantifica-
tion of perfusion parameters in other organs than myocar-
dium. Here, the scaling procedures were suggested in the 
context of the bolus-and-burst technique, but it could also 
be applied as a modification to the burst-replenishment 
technique in [11] to extend it for absolute quantification 
in other organs.

In addition to other known DCE-US methods, the pre-
sented method provides an estimate of the local AIF. This 
avoids the need to directly measure the AIF time course in 
a feeding artery, except for some type of scaling procedure. 
The direct AIF measurement is a problematic task, espe-
cially for ultrasound imaging because of attenuation of the 
contrast agent in the artery, movement artifacts, low spa-
tial resolution, and the presence of speckle. In addition, as 
in other modalities [27], an AIF from a big artery is dif-
ferent from the local AIF because of the bolus dispersion 
effect, which leads to a broader local AIF. Omitting this 
effect leads to distorted perfusion parameter estimates. 
Finally, the comparison of the local tissue-specific AIFs 

Fig. 4. Estimated and measured arterial input functions (AIFs): (a) 
mean AIFs and (b) confidence intervals shown as mean ± standard 
deviation at each sample.

TABLE I. Perfusion Parameters Estimated in Selected Tissue Regions of Interest. 

MTT 
[s]

Vb 
[mL/100 mL of tissue]

Fb 
[mL/100 mL of tissue]

Group 1
 B olus-and-burst 4.6 ± 1.5 5.5 ± 1.8 75.3 ± 31.8
 C olon [35] 6–26 (3 patients)
  Ileum [35] 6–16 (6 patients)
Group 2
 B olus-and-burst 5.3, 4.0, 5.1 14.5, 30.1, 15.8 164.3, 451.7, 187.0
 C olon [35] 43–155 (5 patients)
  Ileum [35] 8–75 (6 patients)

MTT = mean transit time.
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between various tissues in the imaged area or between the 
examinations might be used in the future for characteriza-
tion of the arterial tree.

The new methodology was illustrated on clinical re-
cordings from 8 Crohn’s disease patients. Its correctness 
was supported by a fairly good agreement between the es-
timated and separately measured AIFs. The slightly lower 
level of the second-pass peak maximum in the estimated 
AIFs could be caused by the attenuation of the contrast 
agent in the tissue recording, which decreases the tracer 
concentration curve level more at high concentration (first 
pass) compared with low concentration (second pass). 
Scaling according to the first-pass peak in Fig. 4 then 
leads to increased level of the second pass. Another source 
of inaccuracy in this comparison is the measured AIFs. 
They are certainly affected by noise which can distort the 
result of the order-statistic filtering especially in the pres-
ence of outliers, e.g., resulting from motion.

Compared with the burst-replenishment method ap-
plied to the same data set within a homogeneous ROI, 
the bolus-and-burst method was shown to be more noise-
robust, and, thus, to allow application to smaller ROIs, 
leading possibly to estimation of perfusion-parameter 
maps. This shows the crucial effect of the incorporation of 
the bolus part of the tissue tracer curve in the estimation 
process (as assumed for the blind deconvolution scheme 2 
in Section III-C).

An attempt to estimate the absolute perfusion param-
eters using the scaling procedure with the separately mea-
sured AIFs was also presented for the patient recordings. 
Although the number of patients was low for a statistical 
evaluation, it illustrated a difference in blood flow (and 
blood volume) values between the two patient groups with 
a factor similar to that reported in literature [35]. On 
average, our flow estimates were clearly higher than the 
values in [35]. The most likely source of possible inaccu-
racies in our flow estimates is the scaling procedure. Es-
pecially, the dependence of the backscattered ultrasound 
signal intensity on blood flow velocity and pressure must 
be measured and possibly used for calibration of the signal 
measurement in arteries. Another source of inaccuracies in 
the scaling procedure is the attenuation due to the con-
trast agent and to the tissue itself. Another fact possibly 
contributing to the mismatch of our flow estimates with 
the study in [35] could be a different stage of the Crohn’s 
disease in our study and in [35]. In addition, in our study, 
the ROIs were drawn in the most severely affected parts 
of the bowel wall, whereas in [35], less affected tissue parts 
could also have been included in the studied specimens.

To make DCE-US applicable in real clinical setting, the 
attenuation problem must be solved. Attenuation caused 
by tissue might be partly compensated by the standard 
time gain compensation or possibly by some more ad-
vanced methods [36]. However, the main problem for 
DCE-US is the correction of attenuation caused by the 
contrast agent. It not only affects the scaling procedure 
but it also distorts the first-pass part of tracer concentra-

tion curves in well perfused tissues. This decreases the 
level of the first-pass peak compared with the rest of the 
tracer concentration curves, and it can even result in a 
valley rather than a peak in the first-pass part caused by 
very high instantaneous contrast agent concentration. It 
could be avoided to some extent by using a lower dose of 
the contrast agent and by using some future imaging tech-
niques which will be more sensitive to the contrast agent 
[37]–[39]. Another approach is to use a postprocessing ap-
proach for estimation of the attenuation coefficient and 
subsequent attenuation correction [40].

A final important issue is the need for motion compen-
sation. This was avoided here by selecting recordings in 
which movement artifacts were small. In a real setup, how-
ever, the movement must be compensated as well. In case 
of in-plane movements, image registration can be applied 
[41]. If movement perpendicular to the imaging plane is 
unavoidable, the problem can be approached only by us-
ing 3-D ultrasound imaging.

Appendix A 
Replenishment Kinetics

The reformulated kinetic model of the replenishment 
part according to (2) can be simplified because a convolu-
tion of a function [here R(t)] with a unit step function is 
an integral of that function:

	 C t F C R
t

repl b d( ) ( ) .= ∫0
0

� τ τ 	 (7)

For a one-compartment model, where R(t) = exp (−(Fb/
Vb)t), the integral can be solved analytically:

	 C t V C e F V t
repl b

b b( ) ( ).( / )= − −
0 1 	 (8)

Hence, in (3), A = VbC0 and β = Fb/Vb.

Appendix B 
Integral of AIF

According to the law of conservation of mass, the mass 
M of contrast agent passing through a given arterial cross-
section with flow F is

	 M F t ta=
∞

∫
0

�AIF d( ) .	 (9)

Along an artery with no branching, both M and F are 
constant. At branching locations in the arterial tree, these 
values change but the ratio M/F remains constant. Hence, 
the integral in (9) remains constant. This assumes no con-
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trast-agent leakage in the arterial tree, which is a valid 
assumption according to physiology.
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Abstract—The aim of this study was to determine whether there are differences in absolute blood flow between
patients with Crohn’s disease with inflammation or fibrosis using contrast-enhanced ultrasound. Eighteen patients
with fibrotic disease and 19 patients with inflammation were examined. Video sequences of contrast data were
analyzed using a pharmacokinetic model to extract the arterial input and tissue residue functions with a custom
software, enabling calculation of the absolute values formean transit time, blood volume and flow. Feasibility of the
examination was 89%. The fibrosis group had lower blood volume (0.9 vs. 3.4 mL per 100 mL tissue;
p 5 0.001) and flow (22.6 vs. 45.3 mL/min per 100 mL tissue; p 5 0.003) compared with the inflammation group.
There was no significant difference in mean transit time (3.9 vs. 5.5 s). In conclusion, absolute perfusion measure-
ment in the gastrointestinal wall using contrast-enhanced ultrasound is feasible. There seems to be reduced blood
volume and blood flow in patients with fibrotic disease. (E-mail: mpkkn@med.uib.no or kimnylund1@gmail.
com) � 2013 World Federation for Ultrasound in Medicine & Biology.

Key Words: Crohn’s disease, Inflammatory bowel disease, Intestinal blood flow, Ultrasonography.

INTRODUCTION

Crohn’s disease is an inflammatory disease that can affect
the entire gastrointestinal (GI) tract, changing between
active and inactive disease (Odze 2003). An important
challenge in deciding how to treat Crohn’s disease is to
identify and separate active inflammation from fibrotic
lesions, because surgery should be performed if the
stenosis is mainly fibrotic. The inflammatory activity in
inflammatory bowel disease usually is characterized by
neo-vascularization and increased vessel density and
fibrosis by comparatively low vessel density; therefore,
a non-invasive diagnostic tool for measuring vessel
density might be useful for separating mainly inflam-
matory lesions from mainly fibrotic lesions (Alkim
et al. 2009; Danese et al. 2006; Hulten et al. 1977;

Kruschewski et al. 1995). Although small arteries in
the GI wall can be seen with ultrasound imaging, there
is no imaging method with a penetration and resolution
good enough to separate intra-mural micro-vessels in
the GI wall (Odegaard et al. 1995). Contrast-enhanced
ultrasound (CEUS) is a more feasible and indirect
method because as it can be used to evaluate perfusion
which is related to vessel density and resistance.

Transabdominal ultrasound of the GI tract is
currently an established method for primary diagnosis
and follow-up of inflammatory bowel disease. It is mainly
used for detection of the affected intestine by measuring
GI wall thickness and extent of bowel disease, but it is
also useful in detecting abscesses, fistulas and stenosis
(Nylund et al. 2010).

High-frequency B-mode ultrasound (.7.5 MHz) in
combination with CEUS is a potentially useful tool for
evaluating changes in disease activity in the affected
intestine (Migaleddu et al. 2009). Certain parameters
calculated from time intensity analysis of contrast
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enhancement have also been shown to reflect the
histologic degree of inflammation (Girlich et al. 2011;
Ripolles et al. 2013). There are also indications that
CEUS can be used to separate inflammation from fibrosis
or to predict the need for surgery (Quaia et al. 2012;
Ripolles et al. 2013).

Microbubbles are true intra-vascular tracers, and
CEUS is a fairly non-invasive method that potentially
can be used to measure absolute perfusion (Mezl et al.
2010). Perfusion quantification with CEUS has been
used to give relative values of blood flow and blood
volume. Previous studies have shown a relationship
between various relative perfusions parameters and
micro-vessel density (Wang et al. 2007, 2011). Unfortu-
nately, relative values do give rise to problems of
reproducibility because data acquired by different scan-
ners can differ. Furthermore, most clinical studies
present data for which the perfusion parameters are
calculated using the log-converted time-intensity data
directly on the ultrasound system or from exported
video sequences (Girlich et al. 2011, Girlich et al.
2012; Schirin-Sokhan et al. 2011). However, this
method can yield erroneous results because it is not
mathematically valid (Peronneau et al. 2010). Raw
linear data should be used or, if not available, re-
linearized data are an acceptable alternative (Rognin
et al. 2008). Finally, because there could be a large vari-
ation in patient hemodynamics and because different
ultrasound machine vendors have different ways of de-
tecting microbubbles, standardization of relative perfu-
sion parameters is difficult.

As a result, we propose to measure absolute
perfusion using a new method called ‘‘bolus and burst,’’
which is a combination of two perfusion quantification
techniques—bolus tracking and burst replenishment—
and enables the calculation of the arterial input function
and thus calculation of absolute perfusion (Hudson
et al. 2009; Lassau et al. 2010; Ostergaard 2005).

The two main aims of our study were: (i) to deter-
mine whether it was feasible to perform transabdominal
absolute perfusion measurements in the intestinal wall
using CEUS, and (ii) to determine whether there were
differences in perfusion parameters between patients
with mainly fibro-stenotic disease and patients with
mainly inflammatory disease using CEUS and high
frequency ultrasound. We also wanted to determine
whether there were differences in the frequency of
typical ultrasound findings in Crohn’s disease, GI wall
thickness and thickness of individual GI wall layers
between the two groups. Accordingly, we chose to
compare a group of patients with Crohn’s disease
receiving medical treatment for a disease flare-up with
a group being treated surgically with fibrosis in the
GI wall.

MATERIALS AND METHODS

The study was designed as a prospective, compara-
tive pilot study of two groups of patients with Crohn’s
disease with different clinical outcomes.

Patients
Thirty-nine patients with Crohn’s disease were

prospectively recruited at Haukeland University Hospital
from October 2008 to December 2011. Twenty patients
were scheduled for surgery (surgery group) and 19
received medical treatment (medical group). Thirty
healthy volunteers were also examined as a control group.

The inclusion criteria were surgical resection owing
to stenotic disease or lack of response to medical treat-
ment in the surgery group and fibrosis in the examined
bowel segment. In the medical group, patients with
flare-up of Crohn’s disease (Crohn’s disease activity
index [CDAI] . 150), systemic medical treatment with
either steroids (prednisolone or hydrocortisone), or tumor
necrosis factor-a inhibitors (adalimumab or infliximab)
were included. Exclusion criteria were age less than
18 y, pregnancy and contra-indications to the contrast
agent. Patients with no findings on ultrasound were not
included. The Regional Ethics CommitteeWest approved
the study, and all patients gave their informed consent to
participate in the study.

Clinical data and biochemical tests
Patient medical history, current and previous treat-

ment and demographic data were collected through
patient interviews or access to the medical records.
CDAI and Harvey–Bradshaw index were registered
before the ultrasound examination (Best et al. 1979;
Harvey and Bradshaw 1980). Blood and stool samples
for the biochemical analysis were collected within
1 wk after the ultrasound examination. Hemoglobin
(g/dL), leucocyte count (109 cells/L), platelet count
(109 cells/L), albumin, and C-reactive protein (CRP)
were measured in blood. The stool was analyzed for
calprotectin.

Ultrasound examination
All examinations were performed by the primary

investigator (K.N.), who is a medical doctor with an expe-
rience of approximately 500 ultrasound examinations of
the bowel. Two ultrasound scanners were used for the
examination; A Logiq 9 ultrasound scanner (General
Electric Healthcare, Milwaukee, WI, USA) with 9L
(6–8 MHz, linear) and 12L (9–14 MHz, linear) probes,
and a Logiq E9 ultrasound scanner (General Electric
Healthcare) with 9L (5.5–9 MHz, linear) and ML6-15
(9–15 MHz, linear) probes. The contrast examination
was done with the 9L probe on both machines. The Logiq

1198 Ultrasound in Medicine and Biology Volume 39, Number 7, 2013



9 scanner uses pulse inversion with harmonic imaging
and the Logiq E9 amplitude modulation for the detection
of ultrasound contrast. The large and small bowels were
scanned systematically starting from the right iliac quad-
rant (Nylund et al. 2010). All affected areas were regis-
tered, but only the area with the thickest wall was
chosen for further investigation with contrast-enhanced
ultrasound.

High-frequency B-mode examination. The wall
thickness and the thickness of the individual ultrasound
wall layers corresponding mainly to the mucosa, submu-
cosa and muscularis propria were measured, and the
average of three measurements was selected for further
analysis (Nylund et al. 2012). The length of affected
bowel seen with ultrasound was also measured. The
probe with the highest frequency range (12L and ML6-
15) was used for the B-mode examination down to 4
cm deep when possible. The 9L was used when there
was poor image quality with the high frequency probes
or for deeper lying bowel segments. We defined high
frequency as center frequency of the ultrasound probe
greater than 7.5 MHz. A stenosis on ultrasound was
defined as an intestinal section with total wall thickness
greater than 3 mm, a narrow or closed off lumen, stiff
appearance, and a lack of peristaltic movement (Gasche
et al. 1999). Ultrasound findings typical for Crohn’s
disease, such as a thickened muscularis mucosa, changes
in echogenicity of the submucosa and muscularis propria
and lymphocyte aggregates along the outer border of
muscularis propria (Crohn’s rosary), were scored accord-
ing to criteria described previously (Nylund et al. 2008).
Briefly, the echogenicity of wall layers corresponding to
the submucosa and muscularis propria was defined using
a semi-quantitative scale of 0–2. For the submucosa, 05
echo rich, 1 5 echo rich with sporadic echo poor
elements, and 2 5 echo rich with diffuse echo poor
elements. Similarly, the echogenicity in the proper
muscle was defined as: 0 5 echo poor; 1 5 echo poor
with sporadic echo rich elements; and 2 5 echo poor
with diffuse echo rich elements. Other ultrasound find-
ings in Crohn’s disease such as a stenosis, fistulas, loss
of stratification, thickened muscularis mucosa and
Crohn’s rosary were dichotomized as: 0 5 not present
and 1 5 present.

Doppler examination.Color Doppler was performed
with the 12L (Logiq9) and the ML6-15 (Logiq E9) with
a velocity scale of 62 cm/s for detection of slow flow.
Gain was increased until to flash artifacts occurred and
then decreased until to the flash artifacts disappeared.
Color Doppler was scored using a Likert scale of 0–2,
where 0–2, 3–5 and .5 color Doppler signals per square
centimeter corresponds to scores of 0, 1 and 2, respec-
tively (Spalinger et al. 2000). Pulse wave spectral

Doppler of an artery in the submucosa was performed
in triplex mode when possible and the resistive index
(RI) of three cycles were measured and averaged.

Perfusion analysis

Contrast-enhanced ultrasound. CEUS was per-
formed using a bolus of 4.4 mL of contrast (Sonovue;
Bracco,Milan, Italy) injected over 2 s, followed by a flush
of 10 mL 0.9% NaCl over 4 s. The mechanical index was
0.09–0.13, and the frame rate was 4–11 frames/s.
Approximately 55 s after injection, the bubbles in the
examined plane were burst using a high mechanical index
flash, and the scanning continued for an additional 30 s.
A continuous video recording including a short pre-
bolus phase and bolus and replenishment phases was
stored as a single 90-s loop (Fig. 1). The same procedure
was performed in the healthy volunteers. To get a
recording from both the small intestine and the colon,
attempts were made to include both a part of the terminal
ileum and the right colon in the imaged section. If the
terminal ileum had excessive peristalsis or was covered
by the cecum, only the colon was examined.

Post-processing. Cine loops were exported as
DICOM files and uploaded to a custom software
(DCE-US; http://www.isibrno.cz/perfusion/). Perfusion
analysis was performed as described by Jirik et al.
(Jirik et al. 2013) with a slight modification described
later (Fig. 2). The video recording was down-sampled
from 4–11 frames/s to 1–2 frames/s, manually corrected
for in plane motion artifacts and re-linearized to obtain
a signal proportional to the concentration of the contrast
agent (Rognin et al. 2008). Next, a region of interest
in the anterior bowel wall was chosen for perfusion anal-
ysis with the ‘‘bolus and burst’’ algorithm (Jirik et al.
2013). This algorithm is a multi-channel, blind de-
convolution algorithm based on least-squares fitting of
the concentration-time-curve with a pharmacokinetic
model. According to the model, the bolus-phase concen-
tration time curve (first 60 s) is a convolution of the arte-
rial input function (AIF) and the tissue residue function
(TRF), as commonly used in other modalities
(Ostergaard 2005). The AIF is modeled as a sum of
non-delayed and delayed log-normal functions (Rognin
et al. 2008). The replenishment phase (final 30 s) is
modeled as a convolution of the same TRF, with the cor-
responding later part of the AIF modeled as described
above. Compared with the ‘‘bolus and burst’’ algorithm
(Jirik et al. 2013), in which the AIF was non-
parametric and the replenishment-phase AIF was
assumed constant, the current method allows for more
reliable and less biased perfusion analysis (R. Jirik,
unpublished observations, 2012). The results were then
scaled so that the estimated AIF had the same area under
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the curve as the AIF measured in an artery in the same
video. Three parameters could be derived from the anal-
ysis: blood volume (Bv) corresponding to the volume of
blood in 100 mL of tissue, mean transit time (MTT) cor-

responding to the average time in seconds that the blood
uses for travelling through the region of interest and,
finally, blood flow (Bf) corresponding to the volume of
blood in milliliters going through 100 mL of tissue per

Fig. 1. Peak intensity in terminal ileum in patient receiving medical therapy (a, c, e) and patient undergoing surgery for
a stenosis (b, d, f). (a, b) B-mode images of the affected intestine. (c, d) The corresponding contrast image. (e, f) The curve

of the re-linearized time-intensity data.

Fig. 2. Perfusion analysis using the DCE-CEUS software on exported DICOM video files from patients with Crohn’s
disease. (a) Different perfusion analysis methods offered by the software, including the bolus and burst with parametric
AIF. (b) The re-linearized intensity values plotted over time (burst excluded). (c) A region of interest drawn in the anterior

wall of affected terminal ileum.
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minute. These three parameters are inter-dependent ac-
cording to the formula:

Bf 5
Bv

MTT
� 60

Thus, MTT is not dependent on the shape of the
measured AIF, or on its integral value. In contrast, Bv
and Bf values are inversely proportional to this integral
value. To test for intra-observer variability in the analysis,
20 CEUS examinations were randomly selected and the
analysis was repeated.

Histology
The operation specimens were examined by the

primary investigator (K.N.) within 30 min after resection,
oriented, cut open longitudinally and mounted on
Styrofoam before fixation in 10% buffered formalin.
Two-millimeter–thick whole mount slices correspond-
ing to the ultrasound plane were excised by the
pathologist with the main investigator present, inked
for orientation and embedded in paraffin using stan-
dard procedures. Five-micrometer–thick whole mount
sections were made and stained with Masson trichrome
for visualization of fibrous tissue. Fibrosis in submucosa
and the proper muscle was graded semi-quantitatively as
previously done by Nylund et al. (2008) where 0 5
normal, 1 5 slight to moderate fibrosis and 2 5 severe
fibrosis. To separate between fibrotic and non-fibrotic
sections, a score of 0 in both wall layers or 0 in the
proper muscle and 1 in the submucosa was considered
non-fibrotic. All other score combinations were consid-
ered fibrotic.

Statistics
The data are presented with median, minimum and

maximum values. Comparison between the surgery and
medical groups was done using the appropriate statistical
tests. Continuous data were analyzed with an unpaired
Student’s t-test if normally distributed and with the
non-parametric Mann–Whitney U test if not. Dichoto-
mous, categorical data were tested with Fischer’s exact
test. Likert scaled data with three categories were
analyzed using the Freeman-Halston’s extension of the
Fischer’s exact test. To test for associations, Pearson’s
correlation was used for continuous data. Pearson’s corre-
lation coefficient is denoted as r. The most promising
parameters were examined with a receiver operating
characteristic (ROC) analysis to identify a possible cut-
off to be used in future studies. Intra-observer variability
for the perfusion parameters was assessed using Pear-
son’s correlation coefficient and limits of agreement
(mean6 1.96 standard deviations); p, 0.05 was chosen
as the level of significance.

RESULTS

Thirty-nine patients were initially included; 20
patients were in the surgery group and 19 patients were
in the medical group. Two of the patients in the surgery
group did not have significant fibrosis in the resected
bowel segment and were excluded. None of the patients
in the medical group had been treated previously with
balloon dilatation for strictures or stenotic occlusion in
the affected area. Absolute perfusion analysis could be
performed in 16 patients in the surgery group and 17
patients in themedical group.Overall, technical feasibility
was 89%. The contrast examination could be performed in
all patients, but the data could not be analyzed in four cases
because of a failure to save the video-loop properly (two
cases), failure to burst the bubbles (one case) and failure
to find an artery in the GI wall for scaling during post-
processing (one case). There were no allergic reactions
or other side effects to ultrasound contrast during the study.

There were no significant differences in gender and
age between the surgery group, the medical group and the
healthy control group. Main indications for surgery were
stenosis in 15 cases, non-responders to medical treatment
in two cases and perforation of the terminal ileum in one
case. The surgery group had significantly more stenotic
disease than the medical group (p , 0.001), had under-
gone previous resections more frequently (p 5 0.005),
had also more frequent small intestinal affection (p 5
0.008) and the diagnosis had been known for a longer
time (p5 0.032). No significant differences in the clinical
indices (simple index and CDAI) between the two groups
were seen. In addition, there were no differences in
biochemical parameters except for leucocyte count and
C-reactive protein, which was significantly higher in the
medical group (Table 1).

The GI wall measured with ultrasound was signifi-
cantly thicker in the surgery group than in the medical
group (p , 0.001; 6.8 [4.5–10.8] vs. 4.9 [2.4–10.1]
mm). The individual wall layers corresponding to the
mucosa (p 5 0.013) and the muscularis propria (p 5
0.001) were thicker in the surgery group (Table 2). The
ratio of the submucosa to the total bowel wall thickness
was significantly higher (p5 0.028) in the medical group
(0.446 0.13) versus the surgery group (0.346 0.11). No
significant changes in color Doppler score and resistive
index between the two groups were seen (Table 2). A
thickened muscularis mucosa (p 5 0.001), echo changes
in the submucosa (p 5 0.016) and Crohn’s rosary (p 5
0.022) were also more prevalent in the surgery group,
but there were no differences in the frequency of fistulas,
stratification loss, and echo changes of the proper muscle.
In the healthy volunteers, there were no significant differ-
ences in blood volume, mean transit time and flow
between the two locations (Table 3).
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Blood volume was significantly higher in the
medical group (3.4 [0.89–9.98] mL per 100 g) compared
with the surgery group (p , 0.001; 0.9 [0.06–4.54] mL
per 100 g). In addition, the blood flow was significantly
higher (p 5 0.002) in the medical group (45.3 [17.3–
254.5] mL/min per 100 g) compared with the surgery
group (22.6 [0.6–78] mL/min per 100 g). The mean
transit time was not significantly different. When the
patients with colonic disease were excluded from
the analysis, there was still significantly higher blood
volume (p 5 0.006) and blood flow (p 5 0.014) in the
medical group than in the surgical group. There was
no comparison with the surgery group because it con-
tained only one patient with colonic disease. Blood
volume (p 5 0.002) and blood flow (p 5 0.005) was
significantly larger in healthy volunteers compared with
the surgery group. There were no significant differences
in blood volume and blood flow between the healthy
and the medical groups, and mean transit time was
not significantly different between any of the groups
(Table 3).

Testing for the intra-observer variability, we found
that Pearson’s correlation coefficient was 0.80 (p ,
0.001) for blood volume, 0.73 for mean transit time

(p , 0.001) and 0.75 for blood flow (p , 0.001). Limits
of agreement were 0.16 2.51 for blood volume, –0.046
3.0 for mean transit time and –0.16 46.7. A scatterplot of
the blood volume measurements and a corresponding
Bland–Altman plot is shown in Figure 3.

For both groups pooled together, there was a positive
correlation between CDAI and blood volume (r 5 0.37;
p 5 0.033), but there were no significant correlations
between perfusion parameters and other clinical or
biochemical markers. There was a negative correlation
with local blood flow and resistive index (r 5 20.48;
p 5 0.029; Fig. 4) and blood volume and bowel wall
thickness (r 5 20.40; p 5 0.021). The measured length
of affected intestine also correlated with calprotectin
(r 5 0.44; p 5 0.026; n 5 28; Fig. 4) and inversely
with albumin (r 5 20.59; p , 0.001).

A post hocROC analysis was done by combining the
parameters blood volume (Vb) and bowel wall thickness
(BWT) through simple division. This new variable was
named ‘‘Vb/BWT-ratio.’’ In the ROC analysis the area
under the curve was 0.92 (p , 0.001) and using a cut-
off of 0.56 mL per 100mL/mm gave the best combination
of sensitivity (0.82) and specificity (0.94) as a test for pre-
dicting surgery or not (Fig. 5).

Table 1. Clinical variables and biomarkers from blood and faeces in patients with Crohn’s disease

Parameter

Surgery group Medical group

p valueMedian Min–Max Median Min–Max

Age (y)* 37 19–77 33 20–70 0.673
Time since diagnosis (Years)y 7 0.3–30 1 0.1–22 0.034
CDAI* 255 63–445 247 160–462 0.239
Simple index* 7 2.0–17 8 2.0–20 0.302
Hemoglobin (g/dL)* 12.6 7.4–15.9 13.1 11.5–16.2 0.204
Leucocyte count (109/L)* 7.2 3.4–10.2 9.6 3.9–22.0 0.005
Platelet count (109/L)y 404 275–778 412 167–844 0.663
C-reactive protein (mg/L)y 9 1–58 19 2–338 0.024
Albumin (mg/L)* 40 33–47 40 24–47 0.269
Calprotectin (mg/L)y 249 19–1931 190 19–1279 0.980

CDAI 5 Crohn’s disease activity index.
* Student’s t-test.
y Mann–Whitney U test.

Table 2. B-mode and Doppler parameters in patients with Crohn’s disease

Parameter

Surgery group Medical group

p valueMedian Min–Max Median Min–Max

Bowel wall thickness (mm)* 6.8 4.5–10.8 4.9 2.4–10.1 ,0.001
Mucosa (mm)y 2.2 1.1–5.8 1.4 0.5–2.5 0.013
Submucosa (mm)y 2.1 1.4–4.8 1.7 1.2–3.8 0.220
Muscularis propria (mm)* 1.8 1.1–4.4 1.3 0.5–2.3 0.001
Length affection (cm)* 10.4 3.2–23.8 12.7 5.1–32.0 0.163
Resistive index* 0.57 0.46–0.76 0.58 0.50–0.75 0.786

* Student’s t test.
y Mann–Whitney U test.
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DISCUSSION

We found that the entire GI wall, mucosa and mus-
cularis propria was thicker in patients stratified for
surgical treatment for Crohn’s disease, whereas blood
volume and blood flow was lower. To our knowledge,
non-invasive absolute perfusion estimates in the GI wall
using CEUS in humans have not been presented previ-
ously, although a similar methodology recently has
been published using a mouse tumor model (Gauthier
et al. 2012).

The relationship between the risk for surgical treat-
ment and wall thickness is not a new finding, and this has
been shown by several authors, but we have found no
reports on the relationship between the thickness of the
individual wall layers and the need for surgery
(Castiglione et al. 2004; Kunihiro et al. 2007; Rigazio
et al. 2009). Normally the echo layer corresponding
to the submucosa is thinner or equal to the layer corre-
sponding to the muscularis propria (Nylund et al.
2012). A recent study using endoscopic ultrasound
showed that thickening of the submucosa is a typical
finding in acute Crohn’s disease (Fritscher-Ravens et al.
2011), which corresponds to our findings in the medical

group. In the surgery group, however, the mucosa and
muscularis propria are thicker compared with the submu-
cosa, which seems to suggest that although relative
submucosal thickening is a feature of early and acute
disease, relative thickening of the mucosa and muscularis
propria is a feature of chronic disease and possibly fibro-
stenotic disease.

A thickened muscularis mucosa, Crohn’s rosary and
echo changes in the submucosa were all more prevalent in
the group treated surgically. These results were expected
because these findings are typical of chronic disease and
are related to chronic inflammation and fibrosis (Lee et al.
1991; Nylund et al. 2008; Odze 2003).

There are few reports on absolute perfusion
measurements in the intestinal wall in humans. Using
a washout technique with a radioactive gas isotope on
patients undergoing abdominal surgery, Hulten et al.
(1976a, 1976b) found that blood flow in the small intes-
tinal wall was 38 (17–75) mL/min per 100 g and in the
colon was 18 (8–35) mL/min per 100 g in patients with
a healthy bowel. Considering that the average weight of
the small intestine is approximately 1300 g and the
average flow of the superior mesenteric artery is

Table 3. Absolute perfusion parameters using CEUS of all GI locations in patients with Crohn’s disease*

Location Parameter

Surgery group

n

Medical group

n

Healthy

n p valueyMedian Min–Max Median Min–Max Median Min–Max

All Blood volume (mL per 100 mL tissue) 0.9 0.1–4.5 16 3.4 0.9–8.1 17 – – ,0.001
Mean transit time 3.9 1.6–9.7 5.5 1.8–9.7 – – 0.276
Flow (mL/min per 100 mL tissue) 22.6 0.6–78.0 45.3 17.3–275.1 – – 0.003

Small
intestine

Blood volume (mL per 100 mL tissue) 0.9 0.1–4.3 15 3.8 1.3–7.6 6 3.1 0.4–11.9 20 0.006
Mean transit time 4.2 1.6–9.7 5.4 2.3–9.7 4.5 2.2–10.9 0.381
Flow (mL/min per 100 mL tissue) 22.1 0.6–57.0 40.9 29.5–71.9 44.9 6.6–91.2 0.014

Colon Blood volume (mL per 100 mL tissue) 4.54 1 3.4 0.9–8.1 11 3.2 0.3–11.7 30 NA
Mean transit time 3.5 5.5 1.8–8.4 4.5 2.1–7.5 NA
Flow (mL/min per 100 mL tissue) 78.0 45.3 17.3–275.1 39.4 2.2–111.4 NA

CEUS 5 contrast-enhanced ultrasound; GI 5 gastrointestinal; NA 5 not analyzed.
* Mann–Whitney U test.
y Surgery group versus medical group.

Fig. 3. (a) Scatter plot with line of identity and Pearson’s correlation coefficient. (b) Bland–Altman plot for the
intra-observer study.
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500 mL/min during fasting, the average perfusion should
be 40 mL/min per 100 g intestine; therefore, these values
seem plausible (Hulten et al. 1976a). This finding was
later confirmed by Ahn et al. (1986a, 1986b) using laser
Doppler also in a intraoperative setting, but they also
found higher blood flow in the colon (37 6 10.4 mL/
min per 100 mL tissue) when obtaining measurements
transendoscopically in unsedated patients.

Studies of patients with inflammatory bowel disease
with the same methodology suggest that Crohn’s disease
causes increased blood flow in the colon in the acute
phase and reduced flow in patients with long-standing
disease. In the small intestine, there appears to be no
increase in flow in the acute phase, but a decrease as
the disease progresses (Hulten et al. 1977; Tateishi

et al. 1997). Our blood flow results seem to coincide
fairly well with values reported previously (Ahn et al.
1986a, 1986b; Hulten et al. 1976a, 1976b, 1977;
Tateishi et al. 1997).

A benefit of modeling perfusion with the one
compartment model is the possibility of differentiating
between blood volume and mean transit time (Mezl
et al. 2010). Since both neo-vascularization and increased
vascular resistance occur in Crohn’s disease, these
changes might be differentiated because vessel density
is related to blood volume, and vessel resistance is related
to mean transit time (Alkim et al. 2009; Danese et al.
2006; Funayama et al. 1999; Hatoum et al. 2003;
Konerding et al. 2010; Mori et al. 2005). Furthermore,
long-standing disease with the development of fibrosis
in the submucosa causes a reduction in vessel density
and therefore in blood volume (Hulten et al. 1977;
Kruschewski et al. 1995). In our patients, we observed
a difference in blood volume between the surgical group
compared with both healthy volunteers and the medical
group. There was however, no significant difference in
mean transit time and blood volume between the healthy
volunteers and the medical group, when an increased
blood volume and prolonged mean transit time would
be expected. This finding might be due to the large range
of values in the healthy volunteers and the low number of
patients in the study.

Limitations
It was technically challenging to identify the bowel

wall clearly and adjust for movement in the healthy
volunteers. These challenges also applied to the arteries
used for scaling, which probably explains the large range
of flow values in the healthy volunteers. Furthermore,
because an artery contains a large amount of microbub-
bles, a normal-contrast dose can cause attenuation within
the vessel and therefore an underestimation of the time

Fig. 4. Scatter plots with linear correlation line and Pearson’s correlation coefficient (r) between resistive index and
absolute flow (a) and calprotectin and length of affection (b) in patients with Crohn’s disease.

Fig. 5. Receiver operating characteristic (ROC) curve of the
parameter combining bowel wall thickness and local blood
volume (Vb/BWT ratio) regarding medical or surgical treat-
ment. The area under the ROC curve (AUROC) is 0.92, and
the optimal cut-off value is 0.56 mL/min/mm, with a sensitivity

of 82% and specificity of 94%.
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intensity values in the peak arterial phase. Consequently,
using an artery for scaling from the same recording may
cause an overestimation of blood volume and blood flow.
The problem of attenuation, identification of small
arteries andmovement can be overcome by using a second
low-dose injection from the same vial (one tenth of the
original dose) and recording the passage of a bolus over
a large artery such as the right iliac artery, for example.
We also attempted this approach, but found that Sonovue
degraded too fast for the method to be reliable (Kwan and
Borden 2010). However, we do not believe that attenua-
tion is of major importance in the small vessels (2 mm
or less) that we used for scaling in our study.

The patients were recruited and grouped according
to a clinical treatment decision, which caused particular
differences in group characteristics. Specifically, there
were more patients with stenotic disease and the disease
had a longer duration in the surgery group. Because we
did not know the histology in the medical group, some
might have had fibrotic lesions. Another potential bias
was the differences in regard to disease location in the
GI tract. Most patients in the surgery group had small
intestinal disease, whereas most patients in the medical
group had colonic disease. Because previous studies
have shown differences in flow in the small intestine
and colon in healthy patients, this could influence our
results. However, the trend was still the same in
a subgroup analysis disregarding the patients with colonic
disease. Furthermore, we did not find a significant differ-
ence in flow between the ileum and the ascending colon in
our control group.

In our study, we had to choose one specific lesion
for comparison, possibly introducing a selection bias.
Based on previous work by other groups, we defined
the most affected area with the thickest bowel wall as
the ‘‘culprit’’ lesion (Girlich et al. 2011; Girlich et al.
2012; Kunihiro et al. 2007; Migaleddu et al. 2009;
Ripolles et al. 2013; Schirin-Sokhan et al. 2011;
Spalinger et al. 2000). In patients receiving surgery,
this area was found in the intestine scheduled for resec-
tion. Because CEUS is a 2-D method, we also had to
choose a specific section of the bowel wall that could
also represent a selection bias regarding choice of lesion
and choice of ultrasound plane during CEUS. This
problem exists for all 2-D methods, and we tried to solve
it by choosing a relatively large region being representa-
tive for the lesion. The ‘‘bolus and burst’’ algorithm for
calculation of absolute perfusion should also be validated
against a gold standard. However, the development of
matrix probes enabling 4-D contrast recordings could
give a substantial improvement in accuracy. As motion
correction becomes more precise, sampling error will
be reduced and will enable easier detection and selection
of a reference artery.

CONCLUSIONS

Absolute perfusion measurements of the bowel
using CEUS and a combination of bolus tracking an burst
replenishment is feasible and might be used in the future
together with GI wall thickness as a tool for treatment
stratification of patients with Crohn’s disease, particu-
larly to distinguish between inflammatory and fibrous
wall thickening.
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Distributed Capillary Adiabatic Tissue Homogeneity
Model in Parametric Multi-channel Blind AIF Estimation
Using DCE-MRI

Ji�r�ı Kratochv�ıla,1,2* Radovan Ji�r�ık,2 Michal Barto�s,1,3 Michal Standara,4

Zenon Starčuk Jr.,2 and Torfinn Taxt5

Purpose: One of the main challenges in quantitative dynamic

contrast-enhanced (DCE) MRI is estimation of the arterial input
function (AIF). Usually, the signal from a single artery (ignoring

contrast dispersion, partial volume effects and flow artifacts)
or a population average of such signals (also ignoring variabili-
ty between patients) is used.

Methods: Multi-channel blind deconvolution is an alternative
approach avoiding most of these problems. The AIF is esti-

mated directly from the measured tracer concentration curves
in several tissues. This contribution extends the published
methods of multi-channel blind deconvolution by applying a

more realistic model of the impulse residue function, the dis-
tributed capillary adiabatic tissue homogeneity model
(DCATH). In addition, an alternative AIF model is used and

several AIF-scaling methods are tested.
Results: The proposed method is evaluated on synthetic data

with respect to the number of tissue regions and to the signal-
to-noise ratio. Evaluation on clinical data (renal cell carcinoma
patients before and after the beginning of the treatment) gave

consistent results. An initial evaluation on clinical data indi-
cates more reliable and less noise sensitive perfusion parame-

ter estimates.
Conclusion: Blind multi-channel deconvolution using the
DCATH model might be a method of choice for AIF estimation

in a clinical setup. Magn Reson Med 75:1355–1365, 2016.
VC 2015 Wiley Periodicals, Inc.

Key words: dynamic contrast-enhanced magnetic resonance
imaging; multi-channel blind deconvolution; arterial input func-

tion; impulse residue function; renal cell carcinoma

INTRODUCTION

Dynamic contrast-enhanced MRI (DCE-MRI) is used for
estimation of tissue perfusion parameters, with the main
application field in oncology (1,2). The treatment
response in terms of changes in perfusion parameters
can be observed within days compared with months
when evaluating morphological changes with RECIST
criteria (3,4).

In quantitative DCE-MRI, the measured tissue tracer
concentration sequence in a region of interest (ROI) is
modeled as a convolution of the arterial input function
(AIF – the tracer concentration sequence in the arterial
input of the ROI) and the impulse residue function (IRF)
(5–7). The parameters of the IRF are the sought perfusion
parameters. These parameters are commonly estimated
by (nonblind) deconvolution, where the AIF is assumed
to be known. The accuracy of the AIF estimate is crucial
for the accuracy of the perfusion parameter estimates.
One approach to determine the AIF is to measure it as
the tissue tracer concentration sequence in a big feeding
artery. However, these measurements are distorted by
flow artifacts, partial-volume effect and saturation
effects. The saturation effects are due to high tracer con-
centration in arteries which leads to a nonlinear relation-
ship between the relaxation rate R1 and the tracer
concentration and to the pronounced T2* effect. In addi-
tion, AIF is distorted by dispersion, i.e., by the transfer
function of the vessel segment between the AIF measure-
ment location and the tissue ROI.

Another common approach to AIF estimation is use of
a population-based AIF (8), which, in addition, ignores
the natural variability of the patient-specific vascular
tree and cardiac output.

A less common approach to AIF estimation is blind
deconvolution (9–11), where both the IRF and the AIF are
estimated simultaneously from the tissue tracer concentra-
tion sequences of one ROI (single-channel blind deconvo-
lution) (11) or of more ROIs (multi-channel blind
deconvolution) (9,10). Single-channel blind deconvolution
inherently estimates the local (ROI-specific) AIF, but it
requires use of strong additional constraints and a careful
initialization procedure to end up with a correct and
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unique solution (11). For multi-channel blind deconvolu-
tion, the uniqueness of the solution is theoretically guaran-
teed for the noise-less case by means of Z-domain
formulation (10), but it allows only estimation of a global
AIF which ignores differences in dispersion of the local
ROI-specific AIFs. The use of nonparametric (10–14) and
parametric (9,15,16) formulations of the AIF have been
reported. A realistic parametric AIF model provides strong
prior information that regularizes the deconvolution algo-
rithm and, hence, improves the reliability of the AIF
estimate.

The IRF of the nonblind approaches is commonly mod-
eled using the extended Tofts models (17–19). More realis-
tic (and much less used) IRF models describe also the
intravascular phase of the tracer distribution, either as a
compartment (two compartment exchange model, 2CXM)
(20,21), using the “plug-flow” assumption (the adiabatic
approximation of the tissue homogeneity model, AATH)
(22,23) or a set of “plug-flow” capillaries (the distributed
capillary adiabatic tissue homogeneity model, DCATH)
(24,25).

The parameter estimation of these more complex IRF
models requires a high signal-to-noise ratio (SNR) (25) in
order not to be ill-posed as they include more perfusion
parameters than simpler IRF models. Furthermore, appli-
cation of these more complex models assumes a high tem-
poral resolution of the acquisition to capture the fast
vascular-distribution phase of the bolus. These are the
main reasons why most quantitative DCE-MRI studies are
based on the Tofts or extended Tofts models. The so far
published blind-deconvolution approaches using one of
these more complex IRF models are (11) (AATH) and (13)
(DCATH). However, both approaches use a nonparametric
AIF and the methods were applied to synthetic and pre-
clinical data. Only very recent conference contributions
(26–28) have reported about blind-deconvolution using
one of these more complex IRF models and a parametric
AIF. However, these methods were applied to preclinical
data and the applied IRF models were the 2CXM (26) and
the AATH (27,28).

In this paper, the published multi-channel blind
deconvolution methods are extended by replacing the
extended-Tofts IRF model by the more realistic DCATH
model. Compared with the AATH model, the DCATH
model provides a continuous formulation of all parame-
ters including the mean capillary transit time. This
allows use of gradient-based optimization.

The commonly used Parker’s AIF model, based on
Gaussian, exponential and sigmoid functions (8,29–32),
is used here as an alternative to the only AIF model
used in blind-deconvolution in clinical applications
(9,15,16) (AIF model based on gamma-variate and sig-
moid functions). Parker’s AIF model includes 10 parame-
ters while the AIF model in (9,15,16) includes 11
parameters. Thus, the reduced number of AIF parameters
partly compensates for the increase of estimated parame-
ters using the more complex IRF model (3 for the
extended-Tofts model, 5 for the DCATH model).

The bolus arrival time differences between the tissue
ROIs and the AIF are modeled as convolution of the tis-
sue tracer concentration sequences with a narrow Gaus-
sian function. This allows for a continuous formulation

of the delay and can be used in general for any AIF
model (including a nonparametric AIF). This is an alter-
native to the Fourier-domain method (25). In addition,
several AIF scaling methods are described and analyzed,
because, generally, any blind-deconvolution method pro-
vides an AIF estimate with an unknown scaling factor.

The accuracy of AIF estimation versus number of tis-
sue ROIs (channels) and the SNR is evaluated on syn-
thetic data (preliminary simplified evaluation published
(33)). Clinical data of renal-cell-carcinoma (RCC) patients
before and after the beginning of the antiangiogenic treat-
ment with Axitinib (Pfizer Inc, New York, USA) are used
for illustration of the presented method and comparison
with use of measured and population-averaged AIFs.

METHODS

The proposed multi-channel blind deconvolution is for-
mulated as minimization of the following function with
respect to the parameters of AIF and IRF, including
physiological constraints:

X
m

X
n

Ct m;nð Þ � FpCp U;nð Þ � R Wm;nð Þ � G lm;nð Þ
� �2

;

[1]

where m is the tissue ROI (channel) index, n is the time
index, � is time convolution over discrete time n, Fp is
plasma flow per unit tissue volume, Ct is the measured tis-
sue tracer concentration sequence, Cp is the AIF (tracer con-
centration in blood plasma), U is the vector of AIF
parameters, R is the IRF (DCATH model), Wm is the vector
of perfusion parameters for the m-th ROI, G is a narrow
Gaussian function modeling the delay between the AIF and
Ct(m,n). It is defined as G(lm,n)5exp[�(nTs2lm)2/(2rG

2),
with lm specifying the delay for the m-th channel signal
and the AIF and Ts is the sampling period. The “width” of
the narrow Gaussian function, rG, is a fixed parameter
ensuring that convolution with the Gaussian function
affects only the continuous channel-delay with minimal
signal distortion of the m-th channel. Active-Set con-
strained-optimization algorithm (34,35) is used (Matlab
Optimization Toolbox, MathWorks, Natick, MA, USA,
function fmincon) with numerically calculated gradient
values. The complexity of the criterial function does not
guarantee convergence to the global minimum, but
synthetic-data results show reasonable convergence (see
below). The optimization scheme is applied directly as a
simultaneous minimization of Eq. [1] with respect to the
AIF and IRF parameters, compared with (9), where the
optimization is implemented as alternating between opti-
mization with respect to the AIF and IRF parameters.

The IRF model (DCATH) is described by four parame-
ters (W¼ {E,kep,lR,r}). We used the truncated normal dis-
tribution to describe the probability of transit time
according to (24). The DCATH model is defined as:

Rv W;nð Þ ¼ 1� 1þ erf
lRffiffiffi
2
p

r

� �� ��1

erf
nTs � lRffiffiffi

2
p

r

� �
þ erf

lRffiffiffi
2
p

r

� �� � [2]
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Rp W;nð Þ ¼ E exp
1

2
kep

2r2 þ kep lR � nTsð Þ
� �

1þ erf
lRffiffiffi
2
p

r

� �� ��1�
erf

nTs � lRffiffiffi
2
p

r
� keprffiffiffi

2
p

� �

þerf
lRffiffiffi
2
p

r
þ keprffiffiffi

2
p

� ��

R W;nð Þ ¼ Rv W;nð Þ þ Rp W;nð Þ

where E is fraction of the tracer extracted into the
parenchymal tissue during vascular passage of the
tracer, kep the rate constant between extravascular
extracellular space and blood plasma and is equal to
EFp/ve, where ve is volume of extravascular extracellu-
lar space, lR is the mean of the non-truncated normal
distribution of transit time and r is its standard devia-
tion. If the ratio lR/r is sufficiently small (no greater
than �1/3 (24)), lR can be replaced by the mean capil-
lary transit time Tc, as used below. The erf is the error
function and it is defined as:

erf tð Þ ¼ 2ffiffiffiffi
p
p

Z t

0

dx exp �x2
� �

: [3]

The AIF model (Parker’s AIF, U¼ {A1,B1,r1,A2,
B2,r2,a,b,s,s}) is formulated as a mixture of two Gaus-
sians and an exponential modulated with a sigmoid
function (8):

Cp U;nð Þ ¼
X2

i¼1

Ai

ri

ffiffiffiffiffiffi
2p
p exp � nTs � Bið Þ2

2r2
i

 !

þ a exp �bnTsð Þ
1þ exp �s nTs � sð Þð Þ;

[4]

where Ai, Bi and ri are the parameters of the i-th Gaus-
sian, a and b are the amplitude and decay parameters of
the exponential function, s and s are the steepness and
center of the sigmoid.

In general, blind-deconvolution methods provide an
AIF estimate with an unknown scaling factor. This factor
has to be estimated using some additional information
(12). Three methods of scaling are used here. The first
method is scaling to the area under the curve (AUC) of a
measured AIF. The second method is scaling to the AUC
of the “tail” of a measured AIF (the part of the curve
after the peak of signal intensity). The third method is a
“reference-tissue” scaling where the AIF estimate is
scaled so that nonblind deconvolution applied to a
reference-tissue region (e.g., muscle) results in an
assumed (literature-based) sum of the fractional blood
plasma volume (vp) and ve. This sum equals the AUC of
the IRF. The reference tissue scaling approach used here
is similar to (12), but includes also the vascular phase
due to the more complex IRF model used here.

AIF scaling with respect to the AUC of the measured
AIF is robust as the complete measured AIF signal is
used, but suffers from signal distortions affecting mainly
the first-pass peak (because of the highest tracer concen-
tration) due to T2* effect, saturation in case of inversion-
recovery and saturation-recovery acquisition methods
and due to nonlinear relationship between R1 and tracer

concentration for higher concentrations. Scaling to the
AUC of the AIF “tail” suffers from low SNR in the later
AIF part. The reference-tissue scaling overcomes these
problems but relies on the same sum of the fractional
blood and extracellular-extravascular volumes for the ref-
erence tissue in all examinations.

Evaluation Methods

Synthetic Data

Synthetic tissue tracer time sequences were generated as
a convolution of the Parker’s AIF model, the DCATH IRF
model and the delay-related Gaussian function (quanti-
ties Cp, R, G in Eq. [1]). The sampling period of synthetic
data (Ts) was set to 1 s. The number of samples was set
to 200 for synthetic data. The following parameter values
were used for AIF (according to Table 1 in (8)):
A1¼ 0.809 mmol.min, A2¼0.33 mmol.min, B1¼0.17046
min, B2¼ 0.365 min, r1¼0.0563 min, r2¼ 0.132 min,
a¼ 1.05 mmol, b¼ 0.1685 min�1, s¼ 38.078 min�1,
s¼ 0.483 min. The parameter value ranges of the gener-
ated IRFs (one IRF for each channel) were the following:
Fp¼ [0.3–0.8] mL/min/mL tissue, E¼ [0.3–0.7], ve¼ [0.1–
0.3] mL/mL tissue, lR¼ [0.167–0.417] min, r¼ [0.1–0.3]
min. The parameters for the Gaussian function G were:
rG¼ 0.0224 min in all of the performed analyses (includ-
ing the clinical analyses) and lm¼ [0.0167–0.3334] min.
The rG value was a compromise ensuring a constant area
under the G(lm,n) curve and avoiding its undersampling-
induced time-domain signal-discontinuity on one side,
while minimizing signal-shape broadening due to the
convolution with G(lm,n) on the other side. White Gaus-
sian noise was added to each generated tissue tracer
time sequence. The SNR range was 3 to 950, defined as
the mean value of the noise-less signal divided by the
standard deviation of the noise. The same SNR was used
in each noise realization for all channels.

The presented blind-deconvolution method was
applied to the synthetic data for different noise realiza-
tions and numbers of channels. The initial AIF-parameter
estimates were as follows: A1¼ 0.6 mmol.min, A2¼ 0.4
mmol.min, B1¼ 0.1 min, B2¼0.1 min, r1¼ 0.02 min,
r2¼ 0.3 min, a¼0.8 mmol, b¼ 0.2 min�1, s¼ 20 min�1,
s¼ 0.3 min. The initial IRF-parameter estimates for all
channels were: Fp¼ 0.2 mL/min/mL tissue, E¼ 0.5,
ve¼ 0.2 mL/mL tissue, lR¼5Ts, r¼Ts and the initial
delays of the Gaussian function G(lm,n) were lm¼0.167
min. For the purpose of this evaluation also other initial
AIF-parameter estimates were investigated. They were
chosen to represent a narrow, wide, low, and high first-
pass peak and several levels of the second-pass peak and
the tail. The optimization constraints were Fp: [10�6–
2000] mL/min/mL tissue, E: [0.001–1], ve: [0.001–1] mL/
mL tissue, lR: [Ts/2–100Ts] min, r: [Ts/2–100Ts] min.
The AIF-parameter constraints were for A1 and A2: [0.1–
1.2] mmol.min, r1: [0.001–0.12] min, s: [1–120] min�1

and [0.01–1.2] for the rest of the AIF parameters (in units
of the parameters given above). The constraints for the
delays lm were [0.01–2] min. The selected nonzero lower
constraint bounds prevented dividing by zero.

The precision and accuracy of the AIF estimation was
measured as a relative L1-based error:
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AIF%ERROR
¼ 1

N

XN
n¼1

1

W

XW
w¼1

jĈ p w;nð Þ � C
ref
p nð Þj

C
ref
p nð Þ

� 100

 !
;

[5]

where N is the number of AIF samples, W is the number of
noise realizations, w is the noise-realization index, Ĉp is
the estimated AIF and Cp

ref is the reference noise-free AIF.

Clinical Data

The evaluation was done on seven clinical examinations
of two patients with RCC. The first and the second exam-
ination of each patient were acquired in a time interval
of two weeks for patient 1 and one week for patient 2.
For patient 2, both examinations preceded the treatment.
For patient 1, the treatment was initiated between these
first two examinations. However, no change was
observed in the second examination with respect to the
first one, based on radiologist’s thorough evaluation of
additional MR images acquired within each examination
in addition to DCE-MRI: native and postcontrast T1-
weighted images, native T2-weighted images, diffusion-
weighted (DWI) and apparent-diffusion-coefficient (ADC)
images. Hence, the first and second examinations are
referred to as baseline for both patients in this evaluation
too simplify the results description.

The following examinations (one examination for
patient 1 and two examinations for patient 2) were
acquired during the Axitinib antiangiogenic treatment
with the time interval of 16 weeks for patient 1 and 3
and 29 weeks for patient 2 from the treatment start of
each patient. The baseline examinations were used for
evaluation of reproducibility, while the follow-up exami-
nations illustrated the response to treatment.

MRI acquisition was done using the Magnetom Avanto
1.5 T MRI scanner (Siemens AG, Munich, Germany). The
dynamic sequence was acquired using T1-weighted 2D
saturation-recovery prepared Turbo FLASH (nonselective
SR pulse), TR/TE/TI 400/1.09/200 ms, flip angle 16�,
image matrix 128 � 128 pixels, three coronal slices in
the abdominal region. The sampling period, Ts, (acquisi-
tion time for one frame, i.e., three slices) was 1200 ms,
the dynamic-sequence acquisition time was 10 min. For
conversion of signal intensity to R1, three precontrast
recordings were acquired using the same pulse sequence
with varying TI (500, 1000, 3000 ms), five frames for
each TI. Bolus of 7.5 mL of the tracer Gadovist (Bayer
Schering Pharma, Berlin, Germany) was manually
injected into the antecubital vein.

The image sequences were registered to correct for
respiration-related motion artifacts. Manual registration
frame-by-frame was used for correction of in-plane shift.
Then, using the precontrast recordings and the proce-
dure described in (36), the dynamic image sequence was
converted from signal intensity to relaxation rate change,
DR1, which is directly proportional to the tracer concen-
tration (assuming a linear relationship in the expected
concentration range).

The population based Parker’s AIF with values from
Table 1 in (8) was used as the initial estimate of the AIF
to provide proximity of the initial estimate to the real

solution and decreases the risk of the trapping in a local
optimum. Initial estimates of the IRF model for each
channel were the same as for the synthetic data. For all
channels, the initial estimates of the delay-related Gaus-
sian function G(lm,n) were lm¼ 0.8 min – the assumed
bolus arrival time of the tracer. The optimization con-
straints were the same as for the synthetic data. The
tracer time sequences used for multi-channel blind
deconvolution were derived from five to eight
homogenous-tissue ROIs manually drawn by a radiolog-
ist within the tumor, psoas muscles, and vertebrae, cho-
sen from all three acquired slices. The tracer
concentration time sequences were calculated as the
mean within each ROI at every time point. The SNRs of
these signals were in the range of 9.7 to 44.5 with the
highest SNR values in the tumor rim. For the clinical
data, the SNR was estimated as the mean value of the
tracer time sequence divided by the standard deviation
of its last 2-min segment (assumed constant).

The AIFs estimated by means of blind multi-channel
deconvolution were used in pixel-by-pixel nonblind
deconvolution (Eq. [1], where Cp is the estimated AIF
and m¼ 1) to estimate the perfusion-parameter maps.
The lower SNR of pixel-based tracer time sequences
(from 3 for muscle to 13 for RCC metastasis) suggests
that the complete DCATH model cannot be used reliably
(25). Hence, the DCATH model was simplified by fixing
the parameter r to a small value, Ts/2. This value is high
enough to preserve the continuous formulation of the
impulse residue function inherent to the DCATH model
and low enough to consider the model as an approxima-
tion of the AATH model, and lR is replaced by Tc in
Eq. [2].

The reference tissue for AIF scaling was the psoas
muscle. The reference literature-based sum of the frac-
tional blood volume and the extravascular extracellular
space volume is 14 mL/100 mL tissue (37,38). Note that
blood volume in (37) was converted to blood-plasma vol-
ume by multiplication with (1-r�Hct), where Hct is the
large vessel hematocrit and r is the ratio of small to large
vessel hematocrit (r � 0.7, Hct � 0.4) (39).

The directly estimated perfusion parameters were Fp,
E, ve, and Tc. The perfusion parameters derived from the
directly estimated parameters were the blood plasma vol-
ume (vp5TcFp), the volume transfer constant between
blood plasma and extravascular extracellular space
(Ktrans5FpE), the rate constant between extravascular
extracellular space (kep5EFp/ve) and the permeability
surface area product (PS¼-Fpln(1-E)).

Perfusion parameters of the tumor tissue region were
estimated for each examination and each slice, using
four estimates of AIF: examination-specific blind-decon-
volution based AIF, patient specific blind-deconvolution
based AIF (average of examination specific blind-
deconvolution based AIFs for the given patient), Parker’s
population AIF and examination specific measured AIF.
The measured AIFs were obtained as a pixel-based tissue
tracer time sequence in large arteries near the tumor,
divided by 1-Hct to convert the tracer concentration in
blood to the concentration in blood-plasma (7). Further-
more, all above described three types of AIF scaling (see
end of the Section Methods) were applied. The resulting
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perfusion parameter estimates were compared to each
other and with literature values.

RESULTS

Synthetic Data

Blind multi-channel deconvolution with the parameters
above was applied to the synthetic data with 500 differ-
ent noise realizations, four ROIs, and SNR¼ 30 (average
SNR in the clinical tissue ROIs). Figure 1 shows the
mean estimated AIF 6 standard deviation.

Estimation of AIF versus Initial Estimates

The same experiment was repeated for several initial
AIF estimates (parameters set manually). The resulted
AIF estimation 6 standard deviation compared to the
true AIF (model) for some initial AIF estimates are
shown in Figure 2. The last example of the initial esti-
mate illustrates the case of AIF estimation being trapped
in an incorrect local optimum (probably due to the
extremely low tail of the initial AIF).

Estimation of AIF versus Number of Channels

The relative L1-based error (Eq. [5]) and the standard
deviation of the error of AIF estimation decreases with
increasing number of tissue ROIs (channels), Figure 3.
The error of AIF estimation was for four ROIs approxi-
mately 6% and less for more ROIs.

Estimation of AIF versus Signal to Noise Ratio

The relative L1-based error (Eq. [5]) and the standard
deviation of the error of AIF estimation decreases with
increasing SNR, Figure 4. An AIF-estimation error of
approximately 2.5% and less was obtained for SNR
higher than 30.

Clinical Data

Figure 5 shows examination-specific blind-deconvolution
AIF estimates, measured AIFs and Parker’s AIF for all

examinations of the two RCC patients. For better clarity,
the time scale was magnified. The blind-deconvolution
AIFs were visually similar to Parker’s population AIFs.
Taking into account the independence of the blind decon-
volution algorithm on the initial AIF estimate shown in
the simulations, this indicates that Parker’s population-
based AIF is a realistic AIF estimate. The low level of the
first-pass peak in the measured AIFs compared to other
AIF types shows the saturation effect.

Figure 6 shows three perfusion-parameter maps of the
RCC metastasis obtained using the examination-specific
blind-deconvolution AIF for the same slice of the first
examination of patient 1.

In each slice, an experienced radiologist delineated the
tumor regions. Boxplots were calculated from all pixels

FIG. 1. AIF estimation, four ROIs, SNR 30, 500 noise realizations,
inset shows the initial part in detail.

FIG. 2. Dependence of blind deconvolution on the initial AIF esti-

mate, four ROIs, SNR 30, 500 noise realizations.
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of these tumor regions for each perfusion parameter for
each patient examination (all three slices) and for each
type of AIF estimation.

Boxplots in Figure 7 show a comparison of the AIF scal-
ing methods for two selected perfusion parameters for
both patients and all examinations using the examination
specific blind-deconvolution AIF estimates. In each box-
plot, the central mark is the median, the edges of the box
are the 25th and 75th percentiles and the whiskers extend
to the most extreme data points not considered outliers. In
cases, where the notches in the boxplots do not overlap,
the true medians differ with a 95% confidence (40). Scal-
ing to the AUC of the measured AIF and to the AUC of the
measured AIF’s tail gave substantially less consistent
results. More specifically, the reproducibility of the
perfusion-parameter estimates for the baseline (ex1 and
ex2) examinations was lower and the treatment effect was
not according to expectations (see below) for PS of patient
2. This indicates that, for our experimental setup, the AIF
measurement artifacts connected to high tracer concentra-
tion and low SNR in the AIF tail (see section Methods)
contribute to the error of AIF scaling more than the vari-
ability of ve1vp in the reference tissue used in reference-
tissue AIF scaling. Further results are shown only for the
reference-tissue scaling.

Boxplots in Figure 8 show the time evolution for the
selected perfusion parameters for both patients and all
examinations using examination-specific and patient-
specific blind-deconvolution AIF estimates, measured
AIFs and Parker’s AIF. Note different y-axes for different
AIF estimation methods in Figure 8. The complete set of
results and literature values are given in Table 1. The
literature based values are taken from studies in (3) and
(41). Note that blood flow and blood volume given in (3)
were converted to blood-plasma by multiplying with
(1-r�Hct). A Mann-Whitney U-test on a 95% significance
level was used to test the null hypothesis that the two
baseline examinations resulted in perfusion-parameter
estimates with the same medians. This null hypothesis
was not rejected (P> 0.05) for table values in bold,
in almost all cases of the examination-specific blind-
deconvolution AIFs: for kep, Ktrans, PS, and ve of patient

FIG. 4. AIF estimation error (mean plus/minus standard deviation)

versus SNR, number of channels 4, 500 noise realizations.

FIG. 5. Examination-specific blind-deconvolution AIF estimates

(“Blind estimated AIFs”), measured AIFs and Parker’s population
AIFs for both RCC patients (P1, P2) and their examinations (ex1–3
for P1 and ex1–4 for P2), magnified in time, normalized to the

maximum signal value.

FIG. 3. AIF estimation error (mean plus/minus standard deviation)

versus number of ROIs, SNR 30, 500 noise realizations.
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1 and for E, Fp, Ktrans, and PS of patient 2. For other
types of AIFs, the medians were different (P< 0.05),
except for the patient-specific blind-deconvolution
AIFs for PS and vp of patient 1 together with E of
patient 2, and vp of patient 1 for the Parker’s AIF.
These statistical results correspond to overlapping of
boxplot notches in Figure 8. In summary, the best
reproducibility of the perfusion-parameter estimates
for the baseline examinations was achieved for
examination-specific blind-deconvolution AIFs.
Slightly worse reproducibility was achieved using
patient-specific blind-deconvolution AIF and Parker’s
AIF ranked as the third. Use of the measured AIFs
resulted in rejection of the null hypothesis in all cases
which indicates the worst reproducibility.

A therapy-induced increase in fibrotic and necrotic tis-
sue is expected, leading to a decrease in vp (boxplots not
shown, see Table 1 and its description below) and hence
also in Fp and PS. Therapy-induced blood vessel normal-
ization is also expected, further decreasing PS, but
increasing Fp (i.e., opposite effect on Fp than fibrosis and
necrosis). The trend in the parameter change was in
agreement with the known treatment effects for antian-
giogenic therapy.

According to Figure 8, Fp clearly decreases due to ther-
apy with all AIF estimation methods. Hence, the effect
of fibrosis and necrosis on Fp seems to be more pro-
nounced than that of vessel normalization. The effect of
increased fibrotic-tissue fraction and vessel normaliza-
tion on ve is not clearly known, while pronounced necro-
sis is supposed to increase ve. The ranking of the AIF
estimation methods with respect to the consistency with

the expected effect of therapy is the same as in the eval-
uation of reproducibility.

Table 1 shows that the least reliable perfusion parame-
ters in terms of using examination-specific blind-decon-
volution AIF were vp and Tc. Their estimates showed the
least reproducible baseline and treatment-effect consis-
tency. This shows that Tc is the perfusion parameter,
which is the most difficult one to estimate out of the
directly estimated parameters. As vp is derived from Tc

(vp5TcFp), the estimation error of Tc is propagated to the
estimation error of vp. According to Table 1, for vp, the
patient-specific blind-deconvolution AIFs resulted in a
better reproducibility and consistency with the baseline
and assumed therapy effect (decrease) than the
examination-specific blind-deconvolution AIFs.

The literature-based RCC perfusion parameter values in
Table 1 are divided into untreated patients (before the
treatment), and treated patients with antiangiogenic ther-
apy. The effect of the antiangiogenic treatment in (3) and
(41) is the same as in our results using blind deconvolu-
tion AIFs (decrease of Fp and vp, increase of E and incon-
clusive change in ve). This supports our assumptions
about the therapy effects. The estimated perfusion param-
eter values were mostly in the same range as the literature
values.

FIG. 6. Examples of three perfusion maps, Patient 1: examination

1, obtained using reference-tissue AIF scaling, examination-
specific blind-deconvolution AIF. Tumor ROI delineated in red in
the anatomical image and magnified in the perfusion-parameter

images.

FIG. 7. Comparison of scaling methods on two estimated perfu-
sion parameters of the tumor for all examinations (abbreviated as
“ex”) of both patients using the examination specific blind-

deconvolution AIFs scaled to the reference tissue (AUCIRF), to the
AUC of the measured AIF (AUCAIF) and to the tail of the measured

AIF (AUCAIF tail).
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FIG. 8. Time evolution of the tumor perfusion parameters obtained using the examination specific blind-deconvolution AIFs (EST),

patient-specific blind-deconvolution AIFs (MEAN EST), Parker’s AIF (PARKER) and examination-specific measured AIF (MEASURED) for
the two patients and all of their examinations (abbreviated as “ex”), reference-tissue AIF scaling.
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DISCUSSION AND CONCLUSIONS

An extension to the published blind multi-channel
deconvolution methods for AIF estimation was presented
and tested on synthetic and clinical data. The standard
extended-Tofts IRF model was replaced by the more real-
istic DCATH model, which describes the vascular distri-
bution phase of the tracer in more detail. To compensate
for the increase of the number of parameters to be esti-
mated by blind deconvolution, the standard Parker’s AIF
model (described by 10 parameters) was used instead of
the AIF model used in the blind-deconvolution approach
(9,15,16) (described by 11 parameters).

The dependence of the AIF-estimation accuracy on the
number of channels and SNR was demonstrated on simu-
lated data. In general, the results show that the AIF can be
estimated with a high accuracy (relative error 5% and less
under realistic conditions, i.e. SNR 30, four channels or
more). The choice of the number of channels (tissue ROIs)
should be as high as possible for the given application,
depending on the number of different tissue types in the
imaged region.

On the other hand, the number of tissue ROIs is lim-
ited by the fact that tissue ROIs too remote from the ana-
lyzed tissue might degrade the AIF estimation because of
different dispersion of their local AIFs (in multi-channel
blind deconvolution, the dispersion of AIF is assumed
the same for all tissue ROIs). This might be solved by
including the dispersion term (42,43) in the model used
in the blind-deconvolution algorithm.

The evaluation of the multi-channel blind deconvolu-
tion algorithm on clinical data was used for an illustra-
tion of the method performance. The results indicate
that blind multi-channel deconvolution leads to
perfusion-parameter estimates which are fairly reproduc-
ible and consistent with theoretical expectations of the
treatment effects. The blind-deconvolution based AIF
estimates were more reliable (in terms of reproducibility
and consistency) than the population based Parker’s AIF
and the measured AIFs. In addition, the examination-
specific blind-deconvolution AIFs were more reliable
than patient-specific blind-deconvolution AIFs (taken as
the average of all examination-specific blind-deconvolu-
tion AIFs for a given patient), which indicates the impor-
tance of examination-specific AIF estimation.

The lower performance of Parker’s population-based
AIF compared to the blind-deconvolution based AIFs
can be explained by intrapatient differences in the vas-
cular system, in the therapy- and disease-induced vascu-
lar tree change and by differences in manual injection
speed. These effects are not accounted for when using
the same AIF for all experiments. The lowest perform-
ance of the measured AIFs compared to the blind-
deconvolution and Parker’s AIFs was due to signal satu-
ration (for arterial tracer concentration higher than a cer-
tain level, the longitudinal magnetization reaches the
steady state during inversion time) and flow artifacts.

It should be noted that in most DCE-MRI studies, the
nonblind deconvolution relies on the simple Tofts or
extended Tofts IRF model. Here, the DCATH IRF model
(with fixed r parameter) was used instead. The use of
such more complex IRF model puts more demands on

the accuracy of the AIF. This might explain the fairly
poor performance when using Parker’s population AIF
and the measured AIF.

An extended evaluation on a larger patient group will
be performed to test the validity of the blind-
deconvolution approach in clinical settings.

In conclusion, blind multi-channel deconvolution
appears to be a good method of AIF estimation avoiding
the problems of AIF measurement artifacts and avoiding
simplification induced by the use of population-based
AIF models. It might be the method of choice when com-
plex IRF models (such as AATH, DCATH, 2CXM) are to
be applied in nonblind deconvolution.
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A B S T R A C T

Purpose: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need
for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small
animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts.
Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-
surface area product in addition to the classical perfusion parameters) poses stricter requirements on the ac-
curacy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharma-
cokinetic models and presents a method for estimation of the AIF based on blind deconvolution.
Methods: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic
models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution.
Results: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF
estimation leads to comparable results as the use of the true AIF.

Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a
consistence with the known effects of the molecular weight.
Conclusion: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI
provides reliable perfusion parameter estimates under realistic signal to noise conditions.

1. Introduction

Dynamic contrast-enhanced (DCE) MRI is an important method
characterizing the status of tissue microvasculature. This is important
for diagnosis and assessment of response to treatment mainly in on-
cology [1]. Small animal (mice, rats) DCE-MRI [2] is an important tool
for development of new drugs, typically for anti-cancer therapy, such as
anti-angiogenic drugs [3–5].

The aim of this paper is to improve the quality of small animal
quantitative DCE-MRI. In DCE-MRI, contrast agent concentration time
curves of tissue regions of interest (ROI, e.g. the whole tumor or each
voxel) are derived from MR image sequences acquired before, during
and after contrast agent administration. In quantitative DCE-MRI, each
tissue curve is approximated by an arterial input function (AIF)

convolved with an impulse residue function (IRF) multiplied by plasma
flow. The AIF is the contrast agent concentration curve in the arterial
input of the tissue ROI. Estimation of a reliable AIF for each ROI is a
challenge. Presently, it is one of the major factors causing low reliability
of DCE-MRI.

Arterial input functions. There are several approaches to estimate the
AIF. The first approach is to derive it from the acquired image sequence
as the contrast agent concentration curve in a large artery [6]. How-
ever, such a measurement is distorted by flow artifacts, partial volume
effects, saturation, T2∗ effects and dispersion. The partial volume arti-
fact is more pronounced in small animal recordings. This is because of
substantially smaller animal body size and the consequent need for
coarser spatial resolution relative to the vessel size in small animal
versus clinical DCE-MRI in order to achieve acceptable signal to noise
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ratio (SNR). Flow artifacts are also more severe for small animal DCE-
MRI because of higher ratio of flow velocity to slice thickness in small
animals.

The second approach is to use a population based AIF [7]. This ig-
nores the differences in the vascular tree between different individuals
and depends on the AIF acquisition method and the contrast agent used
for creation of these populations based “standards”.

The third approach is based on analysis of arterial blood samples
taken during the bolus application [8]. It is a fairly invasive method and
suffers from AIF shape dispersion (blood samples are taken far from the
arterial input of the tissue ROI).

The fourth approach is based on a reference tissue (e.g. muscle) [9].
The AIF is estimated from the tissue curve in this reference tissue and
the presumably known perfusion parameters. This approach has been
shown for the Tofts model. For advanced pharmacokinetic models, the
complete set of perfusion parameters in the reference tissue would have
to be known, which is not realistic.

This paper is focused on a very different approach to estimate the
AIF – blind deconvolution [10,11]. When imposing prior knowledge
(e.g. positivity of the signals, a parametric AIF model and a parametric
model for the IRF) and a suitable initial estimation scheme, it is possible
to estimate simultaneously the parameters of the AIF and the perfusion
parameters from the measured tissue ROI contrast agent concentration
curves. This provides examination specific AIF estimates.

Impulse residue functions. In DCE-MRI, the usual pharmacokinetic
models for the IRF are the Tofts and extended Tofts models [12,13]. The
estimated perfusion parameters included in these models are the rate
parameters Ktrans, kep and ve (and also vp for the extended Tofts model),
see Table 1 for description of perfusion parameters. To estimate a more
complete perfusion parameter set, including blood plasma flow, Fp, and
vessel permeability surface area product, PS, advanced pharmacoki-
netic models [12,13] must be applied. The most relevant are the two
compartment exchange model (2CXM) [14], the tissue homogeneity
model (TH) [15], the adiabatic approximation to the tissue homo-
geneity model (ATH) [16], the distributed parameter (DP) model [17],
the distributed capillary adiabatic tissue homogeneity model (DCATH)
[18], and the Gamma Capillary Transit Time (GCTT) model [11].
However, the parameter estimation of these advanced pharmacokinetic
models requires a high SNR in order not to be ill-conditioned. Fur-
thermore, application of these models assumes a high temporal re-
solution of the acquisition to capture the vascular distribution phase of
the bolus. These are the main reasons why most quantitative DCE-MRI
studies are based on the Tofts or extended Tofts models.

This paper is focused on blind-deconvolution AIF estimation in
small animal DCE-MRI using advanced pharmacokinetic models. As a
realistic AIF model is an important prior information, we concentrate

on parametric AIF formulations. To the authors' knowledge, only two
papers [19,20] have been published on this topic. They are based on an
AIF model proposed originally for clinical DCE-MRI [10,11], described
by 10 parameters, and do not contain any analysis of the accuracy and
precision of the estimated AIFs.

The contribution of this paper is two-fold. First, we propose a 7-
parameter AIF model taylored to small animal DCE-MRI to take ad-
vantage of the fact that a small animal AIF is usually of a simpler shape
than a clinical AIF, see below. This reduction of AIF parameters (7
versus 10) helps to reduce the ill-conditioned character of blind de-
convolution. Second, we propose an evaluation method on real data
(where no ground-truth is available) based on use of two contrast
agents with very different molecular weights. The known effects of the
molecular weight on the shape of the AIF estimates are assessed.
Furthermore, the consistency of the estimated perfusion parameters
with the known effect of the contrast agent molecular weight is quan-
tified. For example, the values of Fp and vp should be molecular weight
independent, while PS should decrease with increasing molecular
weight [21–24]. This perfusion parameter evaluation approach has
been used only in [24] for non-blind deconvolution (measured AIF) and
it was applied to the mean signals of the tumor regions in a tumor
canine model. We present a voxel-based analysis.

This work is a substantial extension of our initial study [25,26]. The
proposed blind deconvolution AIF estimation method gave consistent
results suggesting that it can be used as a reliable AIF estimation
scheme.

2. Material and methods

2.1. Perfusion modeling and parameter estimation

The tissue contrast agent concentration time curve in a ROI, C(t), is
given by the time-domain convolution of the AIF common for all ROIs,
Cp(t), and the delayed local IRF, R(t−Δt), multiplied by the local
plasma flow, Fp [13]:

=C t F C t R t t( ) · ( ) ( )p p (1)

The parameter Δt, is the delay between the common AIF and the
ROI-specific local AIF, formulated as a part of the IRF as it is ROI
specific.

Arterial input function. For the AIF, the standard model for small
animal DCE-MRI is a bi-exponential function [27–29]. While this model
is probably sufficient for the Tofts and extended Tofts pharmacokinetic
models, it is not suitable for advanced pharmacokinetic models, such as
the ATH model. The need for finer time domain sampling and more
perfusion parameters inherent in these advanced IRF models require a
more flexible AIF model. Especially the sharp peak of the bi-exponential
AIF is unrealistic.

The AIF is a convolution of the bolus application function (contrast
agent concentration versus time at the location of the cannula) and the
remaining vascular distribution components. Assuming a typical case of
a mouse examination with a constant speed of the contrast agent ap-
plication (using a linear infusion pump) of 1mL/min, the injection of a
0.1 mL dose of the contrast agent would take 6 s. This corresponds to
the convolution of a rectangular blurring function of width 6 s with an
ideal AIF which would be obtained for an instantaneous bolus appli-
cation.

To model this blurring and to allow more degrees of freedom needed
for a more detailed AIF, the AIF model proposed here is the sum of three
gamma variate functions:

=
=

C t t e( ) .p
n

n
t

1

3
n

(2)

Here, t is time in minutes, while β, αn and τn are the model para-
meters. To keep the number of AIF parameters low, the parameter β is

Table 1
Description of symbols.

Quantity Description Unit

Fp Plasma flow mL/min/
mL

PS Permeability-surface area product mL/min/
mL

vp Plasma volume mL/mL
ve Interstitial volume mL/mL
Ktrans Volume transfer constant 1/min
kep Interstitium-to-plasma rate constant 1/min
E Extraction fraction –
Tc Capillary mean transit time min
Δt Delay between the common AIF and the ROI-specific

local AIF
min

μ Mean of the nontruncated normal distribution of Tc
(DCATH model)

min

σ standard deviation of the nontruncated normal
distribution of Tc (DCATH model)

min

Ts sampling interval min
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common for all three gamma variate functions. The number of gamma
variate functions was set to three as a compromise between a too high
flexibility of the AIF model and the need for a low number of AIF
parameters, based on our preliminary experiments. The same number of
gamma variate functions is used also in the clinical AIF model of
[19,20] applied in the context of blind deconvolution in mice.

No delay between the gamma variate functions is modeled because
the dynamics of the cardiovascular system in small animals is very fast
and multiple passes of the contrast agent bolus are not visible in the
AIF, contrary to the case of human AIFs. More specifically, for humans
the whole blood volume is pumped through heart in approx. 1min
(cardiac output 5 L/min, blood volume 5 L [30]), while for mice in
about 0.15min (cardiac output 15mL/min, blood volume 2.25mL
[30]). As in human AIF, the distance between the 1st and 2nd pass
peaks is approx. 12 s [31], we can expect the corresponding distance in
mice to be 12/1 · 0.15= 1.8 s. Assuming the above described rectan-
gular blurring function of width 6 s, the 2nd pass peak is very likely to
be filtered out. In support of this assumption, no second pass peak is
observable in measured mouse AIFs [27–29], nor in blind deconvolu-
tion AIF estimates of mice in [19] (Supporting information 3).

A more specific argument about the presence of the 2nd pass peak in
mouse AIFs follows from a study in [32]. First, the authors state that the
fastest application of the contrast agent bolus tolerated well by mice
was 2mL/min. With this maximal infusion-pump rate, lower volumes
of the contrast-agent bolus (0.025mL and 0.050mL) were applied in
murine DCE-MRI, corresponding to bolus administration durations of
0.75 s and 1.50 s. This led to a visible 2nd pass peak in the AIFs mea-
sured in the left ventricle. On the other hand, application of a full bolus
(0.100mL, bolus administration duration of 3 s), has blurred the 2nd
pass peak out. This implies that the proposed AIF model (2) is suitable
for a contrast-agent bolus of 0.100mL or more, assuming the infusion-
pump rate 2mL/min, i.e. bolus administration duration of 3 s or more.
This is the case of the most published studies on murine DCE-MRI.

Our AIF model could be treated as a simplified version of Schabel's
AIF model [11,19], where we leave out the sigmoid curve and the de-
lays between the gamma variate functions. An example of a measured
AIF and its approximation by the proposed model is shown in Supple-
mental Fig. 1.

Tissue residue function. The constrained DCATH model of the IRF
[18] is used here because of its continuous formulation of Tc, which
leads to the advantage of a smooth transition between the vascular and
parenchymal distribution phases of the IRF. Thus, the criterion function
of the blind deconvolution task is continuous in Tc. This is in contrast to
the more commonly used model ATH [33]. As in [34], a fixed disper-
sion of the capillary transit time Tc is used to decrease the number of
free parameters and to avoid the ill-posed character of deconvolution
when using the DCATH model [35]. With this simplification, the IRF
model can be viewed as an approximation of the ATH model.

Using the assumption of a truncated normal distribution for Tc, the
DCATH model of Fp · R(t) is parametrized by five parameters,
Ψ= {Fp,E,kep,μ,σ} (see Table 1).
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The error function erf is defined as

=t x xerf( ) 2 d exp ( ).
t

0
2

(4)

The dispersion of Tc, σ, was fixed to Ts. This value is high enough to

preserve the continuous formulation of the impulse residue function
inherent to the DCATH model and low enough to consider the model as
an approximation of the ATH model. A high value of σ is more likely to
lead to a non-unique IRF model, see [35].

The mean of the nontruncated normal distribution of Tc, μ, is a good
approximation of Tc [18] if the ratio σ/μ is sufficiently small (no greater
than 1/3) [18]. This allows replacement of μ by Tc in (3).

With Fp and E known, the permeability surface area product, PS
[mL/min/mL], is expressed as PS=− Fp ln (1− E).

Similarly, vp [mL/mL] and ve [mL/mL] are given by vp= Fp · Tc and
ve=(E · Fp)/kep.

Parameter estimation. The first step is the estimation of the para-
meters of the common AIF, Cp(t). The mean contrast agent concentra-
tion time curves in several manually selected ROIs (channels) are cal-
culated. Then, the curves are simultaneously approximated by the
convolutional model (1). This task is formulated as a minimization
problem where the criterion function is a sum of squared differences
between the samples of the contrast agent concentration time curve and
its convolutional model for all channels. Hence, the blind deconvolu-
tion algorithm results in estimates of the Cp(t) parameters (common for
all channels) and of the IRF parameters and Fp (perfusion parameters) of
each channel. The estimates of IRF parameters and Fp are not used in
the subsequent processing.

The blind deconvolution algorithm starts with an initial AIF esti-
mate and initial estimates of Fp and IRF. The minimization problem is
solved by using an iterative alternating optimization scheme [10]. Each
iteration (10 iterations are used here) consists of two parts: 1. Update of
the IRFs' parameters and Fp of each channel while the AIF parameters
are fixed to the actual estimate. 2. Update of the AIF parameters while
the IRFs' parameters and Fp of each channel are fixed to the actual es-
timates. Each update is done using the Active-Set optimization algo-
rithm as implemented in the MatlabTM Optimization toolbox (Math-
Works, USA), function fmincon.

To account for the ROI-specific time delay between the estimated
AIF and the tissue curve (i.e. the bolus arrival time), the IRF of each
channel is formulated to include a delay parameter, Δt (see (1)).
However, the time-domain sampling of the tissue curves causes dis-
continuities of the blind deconvolution criterion function [33]. In order
to avoid this problem, the IRF delay is implemented as a convolution
with a narrow Gaussian function of unity area under the curve and with
the mean value equal to the delay. The width of this Gaussian function
must be small enough to avoid any significant blurring of the IRF. It
must also be high enough to avoid a discontinuous formulation of the
delay due to the temporal undersampling of the Gaussian function.

By its nature, blind deconvolution provides estimation of the AIF
shape, not its scale. A scaling factor needs to be estimated by an ad-
ditional procedure, see Section 2.8.

After the common AIF has been estimated and scaled, it can be used
in a voxel-by-voxel non-blind deconvolution calculating the perfusion
parameter maps. The IRF model is the same as in the blind deconvo-
lution (3) and the implementation is according to [35].

2.2. Simulated data

Synthetic data were generated as a convolution of a reference AIF
(Fig. 1) and Fp · R(t−Δt) (see (1)), with additive Gaussian white noise.
The sampling interval and the number of samples were as for the in vivo
recordings (see below): Ts=1.05 s, N=800.

The reference AIF, Cp ref(t), was a parametric AIF according to (2)
derived from an AIF measured in aorta descendens in one of the in vivo
recordings (Magnevist recording of mouse M1, see below). This mea-
sured AIF was selected manually based on visual assessment of the
arterial voxel contrast agent concentration signals by selecting the
signal with the steepest rising and falling parts and minimum noise. The
measured AIF was then approximated by the AIF model (2) in order to
obtain parameters of Cp ref(t), see Supplemental Fig. 1.
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Two synthetic datasets were generated, one for evaluation of the
blind deconvolution method alone and one for evaluation of its effect
on the accuracy and precision of the subsequent voxel-by-voxel non-
blind deconvolution. The first synthetic dataset (for testing of blind
deconvolution) was generated for 5 SNRblind levels, W=50 noise rea-
lizations per SNRblind level and 8 channels. This corresponded to
5 · 50 · 8= 2000 synthetic tissue curves.

For each of these tissue curves, different parameters of Fp · R(t−Δt)
were chosen randomly (uniform distribution) within the following
ranges: Fp=[0.1−0.8] mL/min/mL, E=[0.3−0.7],
Tc= μ=[5−15] s and ve=[0.1− 0.5] mL/mL (kep=(E · Fp)/ve). The
Gaussian function modeling the IRF delay was used with a standard
deviation σdelay=0.06 s and a random (uniform distribution) mean
value in the interval Δt=[0−2] s.

The noise was generated as a Gaussian random signal multiplied by
a factor according to the intended level of SNRblind. The SNR was de-
fined as the mean of the noiseless signal (Fp · Cp ref(t) ∗ R(t−Δt)) divided

by the standard deviation of the noise.
This synthetic dataset was used for the evaluation of the perfor-

mance of the blind deconvolution algorithm with respect to the initial
AIF estimate, SNR and the number of channels. For testing of the effect
of the initial AIF estimate, the blind deconvolution algorithm was run
using several different initial AIF estimates (i.e. initial parameters of the
AIF model (2)).

The first initial AIF candidate, Cp InitDec, was the result of our initial
study [25]. The second initial AIF candidate, Cp InitMean, was obtained
from blind deconvolution of five recordings of this study (see Section
2.4, Magnevist recordings) by using the initial AIF estimate Cp InitDec as
follows: The mean of the five resulting AIF estimates was approximated
by the AIF model (2), thus providing the parameters of Cp InitMean. Other
initial AIF candidates, Cp InitManX, were generated by manual modifica-
tion of the AIF model parameters so that the set of initial AIFs covered
the cases with a narrow and broad peak and with a slow and a fast
decay of the AIF tail.

Fig. 1. AIF estimates for several initial AIFs, 6 channels, SNRblind=7. Reference AIF (red line), AIF estimates – mean (solid black) ± standard deviation (gray area)
and initial AIF estimates (dotted green). Plot titles: AIF estimation error – errAIF (see (5)), sum of squares of fitting residuals – res (see (6)). AIFs normalized to unity
area under the curve×1000, a.u.: arbitrary units. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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2.3. Evaluation on simulated data

Quantitative evaluation of the AIF estimation was based on the re-
lative AIF estimation error:
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where Cp w[n] is the AIF estimate for the w-th noise realization. The
time variable t has been replaced by the time index, n, to account for the
time domain sampling and N is the number of samples. In addition to
errAIF, the sum of squares of the fitting residuals, res, was calculated
over all channels as
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Here, Cr[n] is the synthetic contrast agent concentration sequence of
the r-th ROI (channel), C n[ ]r is its approximation according to (1) given
by blind deconvolution and R is the number of channels.

For the assessment of the accuracy of the voxel-by-voxel perfusion
parameter estimates obtainable using the common blind deconvolution
AIF estimate, non-blind deconvolution was applied to another set of
synthetic contrast agent concentration sequences. These sequences
were generated using the reference AIF, Cp ref, and three tumor types.
The first was a prostate tumor (Fp=0.21 mL/min/mL, E=0.65,
Tc=18.6 s and ve=0.35 mL/mL [36]). The second was a glioblastoma
(Fp=0.052 mL/min/mL, E=0.161, Tc=11.82 s and ve=0.076 mL/
mL [37]). The third was a colorectal tumor (Fp=0.256 mL/min/mL,
E=0.54, Tc=15.5 s and ve=0.57 mL/mL [19]).

For each tumor type and SNRnon−blind, U=200 noise realizations
were generated and added to the contrast agent concentration se-
quence. The perfusion parameter estimation error was quantified for
each tissue and each SNRnon−blind level as
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Here, w is the index of the blind deconvolution AIF estimate (see
(5)) and u is the index of noise realization added to the contrast agent
concentration sequence of the given tumor type. The hat symbol de-
notes perfusion parameter estimates and the subscript “ref” stands for
the reference value of the given perfusion parameter used in generation
of the synthetic signal of the given tumor type.

A relative estimation error is evaluated also for each perfusion
parameter separately.

2.4. Animal handling

The proposed AIF estimation method was evaluated on real data
from five BALB/c mice (experiment approved by the National Animal
Research Authority) with murine colon tumor cells CT26.WT (ATCC,
CRL-2638) subcutaneously implanted into the left flank (106 cells in HC
Matrigel). The mice were anesthetized with a mixture of isoflurane
(2%) and O2 (800m L/min), and monitored continuously for re-
spiratory rate and body temperature.

Each mouse was examined with two separate DCE-MRI recordings
which were subsequently separately processed, the first one with a high
molecular weight contrast agent (GadoSpin P, Miltenyi Biotec, Bergisch
Gladbach, Germany, molecular weight 200 kDa), and the second one
with a standard low molecular weight contrast agent (Magnevist, Bayer
HealthCare Pharmaceuticals, Berlin, Germany, molecular weight
0.9 kDa). The delay between the bolus injections was 30min. A high
molecular weight contrast agent was injected first because its con-
centration can be assumed constant after 30min, so that its effect on the

tissue curves of the following low molecular weight contrast agent is
minimized [24].

A linear infusion pump was used with injection speed of 1mL/min.
The dose of Magnevist was 0.3mmol/kg weight. Magnevist was first
diluted 1:5 with saline and 0.08mL of this solution was injected, fol-
lowed by 0.2 mL saline flush. For GadoSpin P, the dose of 0.1mL of the
supplied solution (25mM gadolinium concentration) was applied, as
recommended by the manufacturer, followed by the same saline flush
as for Magnevist. When no mixing of the contrast agent and the saline
flush is considered, for simplicity, the applied injection speed corre-
sponds to the contrast agent injection duration of 4.8 s and 6 s for
Magnevist and GadoSpin P, respectively.

2.5. MRI protocol

A 9.4 T BioSpin (Bruker Biospin MRI, Ettlingen, Germany) scanner
was used. Anatomical images were recorded using the RARE sequence
(T2-weighted and T1-weighted pre- and post-contrast). The parameter
values for the T2–weighted sequence were: TR/TE=3500/36ms, FOV
23×35 mm2, image matrix 256× 256, 20 axial slices with the
thickness of 0.7mm and no interslice gap. The parameter values for the
T1-weighted sequences were: TR/TE=666/10ms, with the same geo-
metry as for the T2-weighted sequence.

Before the first bolus administration, calibration scans were re-
corded and used for the conversion of the dynamic image sequences to
the corresponding contrast agent concentration sequences. The acqui-
sition was done using a 2D FLASH sequence with TR=14, 30, 50, 100,
250, 500ms, TE= 2.5ms, flip angle 25∘, image matrix 128×96
voxels, one axial slice located in the tumor center, slice thickness 1mm,
15 images per sequence.

The DCE-MRI recordings (same acquisition parameters for both
GadoSpin P and Magnevist recordings) were acquired using the 2D
FLASH sequence with TR=14ms. The remaining parameters were the
same as for the calibration scans. The sampling interval was 1.05 s and
the acquisition time was 14min (800 images).

2.6. Preprocessing

From multiple-TR calibration recordings, images of kρ (ρ is the spin
density and k is a spatially invariant factor accounting for gain in the
acquisition chain) and of the native T10 were obtained by approxima-
tion of the image data with the model of the FLASH acquisition (simi-
larly to [38]), Eq. (6).

The multiple-TR method provides more reliable estimation than the
standard method based on multiple flip angle recordings [38]. The
multiple-TR method is less sensitive to B1 field inhomogeneity and
imperfections of the excitation profile of the RF pulses.

Subsequently, the same equation of the FLASH acquisition, in-
cluding the estimated kρ values, was fitted to the DCE-MRI image data
so that the relaxation rate R1[n] in each voxel at each time point n could
be estimated. Then, the baseline, R10, was estimated for each voxel as
the mean R1 in the time interval preceding the arrival of the contrast
agent. The contrast agent concentration sequence of each voxel was
calculated as C[n]= (R1[n]− R10)/r1 (assuming that the relaxivity r1 is
tissue independent).

The SNR of in vivo signals C[n] was estimated as the mean of C[n]
divided by the standard deviation of the noise. The noise signal was
estimated by approximation of the later part of C[n] (i.e. a phase with
slow changes, second half of C[n] chosen here) by a second-order
polynomial and subtraction of this polynomial from C[n].

2.7. Initialization of blind deconvolution for real data

Due to local optima in the blind deconvolution optimization pro-
blem, the AIF estimate depends on its initial estimate. A possible so-
lution would be to implement the blind deconvolution algorithm as a
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global optimization scheme where the optimization would be per-
formed several times, each time starting from a different initial AIF
estimate. Then, the initial AIF estimate giving the best fit of the con-
volution model (1) to the tissue signals would be chosen. However, this
approach resulted in a fairly high variability of the peaks of the AIF
estimates when comparing different real data recordings with the same
contrast agent.

Hence, another approach was chosen here. A common initial AIF
estimate was set for all mouse recordings with both contrast agents and
used as a common prior knowledge stabilizing the blind deconvolution
algorithm. This initial AIF was found in two steps. First, the AIF was
estimated several times by blind deconvolution with different initial
AIF candidates. Then out of these initial AIF candidates the one giving
the best fits over all recordings was selected as the single initial AIF.

Five initial AIF candidates were tested. The first initial AIF candi-
date, Cp InitDec, was the result of our initial study [25]. The second initial
AIF candidate, Cp InitMean, was obtained from blind deconvolution
Magnevist recordings of all five mice by using the initial AIF estimate Cp
InitDec as follows: The mean of the five resulting AIF estimates was ap-
proximated by the AIF model (2), thus providing the parameters of Cp
InitMean. The other three candidates, Cp InitRagan, Cp InitCheckley and Cp In-

itHeilmann, were derived from dual exponential AIFs from the literature
[27–29] by imposing a smooth rising phase (beta=0.1 for time in
minutes in (2)) and setting the amplitude of the third AIF model term
(α3) to zero. The best fits of the convolution model (1) to the tissue
signals were obtained in almost all in vivo recordings for the initial AIF
estimate Cp InitMean. Thus, the results below are given for this initial AIF.

2.8. Blind deconvolution and AIF scaling for real data

Blind deconvolution was performed using 6 channels, each corre-
sponding to a tumor voxel with a high SNR (manually selected in the
nonnecrotic region).

AIF scaling was done for each recording. For each recording using
Magnevist, a case specific area under the curve of the AIF, AUCMag, was
derived according to the above mentioned reference tissue approach as
follows. In the first step, the AIF was scaled approximatively based on
the property of convolution stating that the area under the curve of a
convolution result is the product of areas under the curves of the con-
volved functions. Thus, the area under the curve of Cp(t) was calculated
as the area under the curve of C(t) in a reference tissue divided by the
area under the curve of FpR(t). For the ATH model of R(t), the area
under the curve of FpR(t) is equal to ve+ vp. Erector spinae muscle was
used as the reference tissue, with the literature based value of ve+ vp of
0.13mL/g according to ve of mouse masseter muscle in [39] and as-
suming vp to be 5% of ve.

The above procedure neglected the fact that both C(t) and Cp(t)
were sampled in a time limited window. Consequently, the available
sequences did not decay completely to zero. This was taken into ac-
count by the following step.

The contrast agent concentration sequences of the reference region
(erector spinae muscle) voxels were deconvolved with the approxima-
tively scaled AIF. Then the median of ve+ vp estimated in the reference
region was calculated. The ratio of this median and the literature value
of ve+ vp was used for refinement of the AIF scale.

For GadoSpin P this procedure was not reliable because of low SNR.
Instead, the AIF area under the curve for GadoSpin P, AUCGSP, was
calculated as AUCGSP= AUCMag(DGSPr1GSP)/(DMagr1Mag), where DGSP

and DMag are contrast agent doses. The quantities r1GSP and r1Mag are the
T1 relaxivities for GadoSpin P and Magnevist, respectively. The relax-
ivities were measured in a separate in vitro experiment performed using
the same NMR scanner. Using this procedure, we relied on a precise
knowledge of the contrast agent doses.

2.9. Evaluation on real data

The variability of the blind deconvolution AIF estimates and the
shape difference between the Magnevist and GadoSpin P groups were
assessed visually. Perfusion parameters were validated based on their
consistency with the expected effects of high and low molecular weight
contrast agents. The intravascular parameters, vp and Fp, should not be
affected by the contrast agent molecular size. In contrast, PS should
increase with decreasing molecular weight [19,21–23]. The volume of
the extravascular extracellular space, ve, should not be affected by the
contrast agent molecular weight. However, a smaller fraction of this
space might be accessible for high molecular weight contrast agent
particles [40], leading to a possible underestimation of ve.

The voxels for this evaluation were selected from manually drawn
tumor regions (based on anatomical T2-weighted images), excluding
necrotic areas and fulfilling the condition of a sufficiently high SNR
(SNR > 1) in both the Magnevist and GadoSpin P recordings. In ne-
crotic regions, the usual pharmacokinetic models are not valid because
the distribution of the contrast agent is affected by passive diffusion
throughout neighboring voxel regions [2].

The voxels were assumed to be outside of necrotic areas when
kep > 0.2 min−1. This perfusion parameter was chosen because it is
independent of AIF scaling and its maps were spatially consistent (more
than the maps of another scaling independent parameter, E). The
threshold of kep was selected from visual assessment of the perfusion
parameter maps, T2-weighted and post-contrast T1-weighted anato-
mical images.

The estimated perfusion parameters were evaluated using boxplots,
correlation coefficients and proportionality coefficients of the scatter
plots, relating the perfusion parameters obtained for low and high
molecular weight contrast agents.

3. Results

3.1. Simulated data

Arterial input functions. The peak of the estimated AIFs depended on
the initial AIF estimate, while the AIF tail did not, as shown for a rea-
listic SNRblind=7 (see Table 2 for SNRs of real data) and 6 channels
(Fig. 1). The AIF estimation error (5) was related to the goodness of fit
measure, res (Fig. 1). Lower res resulted mostly in a lower AIF estima-
tion error.

The relative AIF estimation error (5) decreased when increasing the
number of channels, as shown for realistic SNRblind in Fig. 2 (a). The
relative AIF estimation error also decreased when increasing SNRblind
(Fig. 2 (b)). In addition, for high SNRblind (approx. for SNRblind>5), the
AIF estimation error reflected a systematic error, i.e. accuracy limits
due to the remaining level of ill-conditioning of the blind deconvolution
process and due to numerical errors (Fig. 2 (b)). For low SNRblind (ap-
prox. For SNRblind<5), the AIF estimation error reflected the precision
limits due to the measurement noise.

Perfusion parameter estimates. Fig. 3 shows the mean relative error of
the perfusion parameter estimates (7) in the subsequent nonblind de-
convolution for the three tumor types (estimation errors of each single
perfusion parameter are shown in Supplement fig. 2). As expected, the
error decreased with increasing SNRnon−blind. In the ideal case, with the
reference AIF, the error approached asymptotically zero (except for
tissue 2). When using blind deconvolution AIF estimates, the perfusion
parameter estimation error did not decrease below approx. 5%, even
with high SNRnon−blind for all three tumor types. This reflected the de-
viation of the blind deconvolution AIFs from the reference AIF. How-
ever, for the SNR observed in preclinical data (SNRnon−blind<10), the
achieved perfusion parameter estimation error was practically the same
for the reference and blind deconvolution AIFs.
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3.2. Real data

The mean SNR values in the evaluated tumor voxels (nonecrotic,
SNR>1) were clearly higher for Magnevist compared to GadoSpin P
(Table 2, columns 3, 4). This corresponded to higher extravasation rate
of the low molecular weight contrast agent. The recordings from mice 1
and 2 had a clearly higher SNR than the other recordings. This was most
probably due to higher volume fraction of vessels in the tumors of these
mice, see below.

The contrast agent concentration sequences of the Magnevist and
GadoSpin P recordings had a similar appearance (Supplement fig. 3).
The decay of the GadoSpin P contrast agent concentration sequences
was slower, compared to the Magnevist sequences. This reflected a
slower renal clearance and a slower extravasation and intravasation of
the high molecular weight contrast agent [21–23,40].

Arterial input functions. AIFs estimated for both Magnevist and
GadoSpin P examinations had a low variance within each contrast
agent group (Fig. 4). On the other hand, there was a clear difference
between the mean AIFs of each contrast agent (Fig. 4) which was in line
with the expected difference between high and low molecular weight
contrast agents [21,40]. Compared to the mean Magnevist AIF, the
mean GadoSpin P AIF had a broader peak. This reflected slower ex-
travasation (i.e. a smaller extraction fraction, E) of GadoSpin P. The
flatter later part of the mean GadoSpin P AIF reflected the smaller
glomerular extraction rate of GadoSpin P.

Table 3 gives the parameters of the mean AIFs estimated from the
Magnevist and GadoSpin P recordings. They were obtained by ap-
proximation of the mean contrast agent specific AIF (solid lines in
Fig. 4) with the model (2). Each of the two mean AIFs was scaled using
the median of AIF scaling factors (Section 2.4) calculated within the
given contrast agent group.

Perfusion parameter estimates. The resulting DCE-MRI perfusion
parameter maps (Fig. 5) were spatially consistent and in the expected
range. They reflected the assumed histological composition. There was

a clear distinction between the tumor rim and the more central part.
High values of Fp and vp in the outer lesion margin corresponded to a
highly vascularized tumor rim.

In line with the theory, the estimates of Fp (Fig. 6) were not affected
by the molecular weight of the contrast agent (with the exception of
mouse 5).

The estimates of vp (calculated as vp= Fp · Tc) were in good agree-
ment with the expected molecular weight independence (Fig. 6). The
parameter vp was the intravascular perfusion parameter with the best
agreement between the low and high molecular weight contrast agents.

The estimates of PS (Fig. 6) were clearly lower for the high mole-
cular weight contrast agent, again in agreement with the known ca-
pillary membrane properties [21–23].

The estimates of ve for the high and low molecular weight contrast
agents were comparable, showing no clear trend of ve with respect to
the molecular weight of the contrast agent. In the recordings from mice
1 and 2, some values of ve were higher than 1. This was probably due to
AIF scaling problems, see discussion below. The boxplots of E, kep and Tc
are shown and commented in Supplement Fig. 4.

The analysis of correlation and regression coefficients included Fp,
vp, PS and ve. These perfusion parameters were the parameters where
the physiological effect of the contrast agent molecular size was the
easiest to interpret.

Table 2, columns 5–8, gives the correlation coefficient for each
mouse and the selected perfusion parameters. Each correlation coeffi-
cient is for a single perfusion parameter estimated from the low and
high molecular weight contrast agent recordings (see example scatter
plots in Fig. 7).

There was a clear difference between the correlation coefficients
estimated for the examined mice. For mice 1, 2 and 5 the achieved
correlation coefficients were largely around 0.7. More variable values
were achieved for mice 3 and 4. These mice had substantially lower Fp,
PS and vp values than mice 1, 2 and 5 (Fig. 6), which might be the
explanation for the lower correlation coefficients. This was also partly

Table 2
Overview of mice recordings: numbers of analyzed voxels and SNRs for the Magnevist and GadoSpin P recordings, correlation and regression coefficients relating the
perfusion parameters of the Magnevist recordings to the GadoSpin P recordings.

Mouse No. of SNR SNR Correlation coefficients Regression coefficients

no. voxels Magnevist GadoSpin P Fp PS vp ve Fp PS vp ve

1 63 9.0 5.1 0.61 0.79 0.86 0.67 1.08 0.39 0.72 0.68
2 53 8.0 4.5 0.83 0.70 0.86 0.36 1.09 0.36 1.36 1.06
3 199 6.6 2.2 0.28 0.89 0.61 0.82 0.93 0.73 0.91 0.87
4 82 4.4 3.3 0.06 0.27 0.52 0.73 1.02 0.63 0.83 1.16
5 19 4.8 2.3 0.85 0.60 0.56 0.81 1.71 0.23 0.92 0.98
Mean 83 6.6 3.5 0.53 0.65 0.68 0.68 1.17 0.47 0.95 0.95
SD 69 2.0 1.3 0.35 0.24 0.17 0.19 0.31 0.21 0.24 0.18

Fig. 2. AIF estimation errors. Initial AIF estimate: Cp InitMean. (a) AIF estimation error versus number of channels (SNRblind=7). (b) AIF estimation error versus SNRblind
(6 channels). Confidence intervals defined as mean AIF estimation error (5) ± standard deviation of the results of the inner summation operation in (5).
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reflected by the SNR values (Table 2). The lowest correlation factors
were observed for mouse 4, which was in line with the low SNR of its
Magnevist recording.

The slopes of the regression curves estimated for each scatter plot
(Table 2, columns 9–12) showed the consistency of the estimated per-
fusion parameters with the contrast agent molecular weight. The slopes
of scatter plots for Fp, vp and ve were close to 1 (slope 1 corresponds to a
perfusion parameter independent of the contrast agent molecular
weight). The slope for PS was clearly lower than one, which corre-
sponds to higher PS for low molecular weight contrast agents.

4. Discussion and conclusions

The presented blind deconvolution approach is based on an AIF
model designed for small animal physiology and applied in combina-
tion with an advanced pharmacokinetic model.

So far, the only AIF model used for blind deconvolution AIF esti-
mation in small animal DCE-MRI using an advanced pharmacokinetic
model [19,20] was Schabel's model [11]. Here, we decrease the com-
plexity of the AIF model by assuming a much faster blood recirculation
in mice compared to humans. Hence no delay between the main and the
recirculation peaks is modeled. This assumption is supported by the fact
that no recirculation peaks are observable in Scabel's-model blind AIF
estimates (supporting information 3 of [19]) and in the mouse AIFs
measured in the left ventricle [27–29], as well as in our measurements
in aorta descendens (Supplemental fig. 1).

Our proposed AIF model is not suitable for a low-volume contrast-
agent bolus of 0.050mL or less (assuming the fastest well tolerated
infusion-pump rate 2mL/min), prepared by application of a less diluted
contrast agent [20] or a lower dose [32,41]. For such cases, Schabel's
AIF model is more appropriate [11]. However, with lower bolus vo-
lumes, the uncertainty about the applied dose becomes high and re-
quires additional correction, such as inductively coupled plasma-optical
emission spectrometry proposed in [20].

Analysis of synthetic and real data showed a dependence of the peak
of the blind deconvolution AIF estimate on the initial AIF estimate. The
peak represents the high frequency band in the Fourier domain.
Assuming model (1), this band is almost removed by the convolution of
the AIF with the IRF because this operation acts like a low-pass filter.
The retrieval of the AIF peak is the most demanding task of the algo-
rithm. The above loss of information was overcome by applying good
priors. It included relevant parametric models for the AIF and IRF, and
a realistic initial AIF estimate.

Another possibility to cope with the dependence of the blind de-
convolution on the initial AIF estimate is to use a global optimization
approach where the curve fitting is repeated for several initial AIFs, and
the best result in terms of fitting residuals is selected for each recording.
This global optimization approach was also tested (data not shown). It
led to worse results than the use of one fixed initial AIF estimate. This
was because the best AIF solution might be found in a local rather than
a global optimum, due to noise.

The fixed initial AIF estimate turned out to be an important part of
prior information, preventing optimization from being trapped in an
incorrect local or global optimum. From this point of view, the blind
deconvolution AIF estimation can be understood as a method for the
adjustment of a population based AIF so that it reflects the case specific
vascular properties.

The results of this study show that a realistic case specific AIF can be
estimated using the proposed blind deconvolution method. This con-
clusion is supported by the fact that a fairly small variation of the AIF

Fig. 3. Mean relative perfusion parameter estimation error (7) of non-blind deconvolution for the reference AIF and for blind deconvolution AIF estimates. Blind
deconvolution AIFs were estimated from 6 channels with SNRblind=7, initial AIF estimate Cp InitMean. Three tissue types.

Fig. 4. AIFs estimated from Magnevist and GadoSpin P recordings. Shaded
areas denote the mean ± standard deviation. AIFs normalized to unity area
under the curve.

Table 3
Parameters of mean AIFs estimated from Magnevist and GadoSpin P recordings
(see (2)).

Parameter [unit] Magnevist GadoSpin P

β [−] 0.0847 0.0755
α1 [mMmin−β] 2.2540 0.6998
α2 [mMmin−β] 0.8053 0.2597
α3 [mMmin−β] 0.5381 0.1206
τ1 [min−1] 1.4330 0.9755
τ2 [min−1] 2.6349 2.3751
τ3 [min−1] 0.0700 0.0327
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estimates was observed within the contrast agent groups. In addition, a
clear difference between the mean contrast agent specific AIFs was
visible, which was according to the known differences in pharmacoki-
netics of the applied contrast agents.

Analysis of simulated data with SNRnon−blind comparable to the SNR
of in vivo data (SNRnon−blind=7) showed that a similar accuracy of the
perfusion parameter estimates can be achieved when using the correct
(reference) AIF and when using a blind deconvolution AIF estimate.

The inaccuracy in blind deconvolution AIF estimation became
visible in perfusion parameter estimates only for higher SNRnon−blind of
the synthetic voxel specific tissue curves (SNRnon−blind>10). This
shows that for real case SNRs, the accuracy of the perfusion parameter
estimates is limited by the accuracy of the non-blind rather than the
proposed blind deconvolution procedure. Our preliminary tests indicate

Fig. 5. Example images for mouse 2, Magnevist. T2-weighted anatomical image (dotted line delineates the tumor, upper left region is a cross section of spine and
spinal muscles). Estimated DCE-MRI perfusion parameter maps and the mask of high SNR voxels outside the necrotic area used for evaluation.

Fig. 6. Boxplots of estimated perfusion parameters. Mx – Mouse number, Mag – Magnevist, GSP – GadoSpin P.

Fig. 7. Example of scatter plots and regression lines for mouse 2. Each circle
corresponds to one high SNR voxel outside necrosis. Left: Fp, corr. coef. = 0.83,
slope=1.09. Right: PS, corr. coef.= 0.70, slope=0.36.
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that more reliable perfusion parameter estimates can be obtained by the
non-blind Lucy-Richardson algorithm in [43], probably due to its use of
a non-parametric deconvolution prior to the parametric one. Also, the
use of additional prior information taking the relationship of neigh-
boring pixels into account, as in [44,45], will improve the performance
of non-blind deconvolution.

The use of several contrast agents with different molecular weights
in DCE-MRI based on advanced pharmacokinetic models has been
proposed also in [19]. The prior information of the molecular weight
independent perfusion parameters Fp, vp and Tc was used in simulta-
neous fitting of multiple contrast agent curves. This led to more reliable
perfusion parameter estimates. Here we propose to use this prior in-
formation solely for evaluation.

The differences in the physiological properties of the tumors (Fig. 6)
and their SNR values (Table 2, columns 3, 4) had a clear effect on the
achievable accuracy of the perfusion parameter estimates. The esti-
mated perfusion parameters showed a higher plasma volume fraction of
the tumors in mice 1, 2 and partly 5. There was also a higher SNR in
these recordings than in the recordings of mice 3 and 4. The above two
factors explain better consistency of the results with the two contrast
agents observed for mice 1, 2 and partly 5, compared to mice 3 and 4.

The estimated correlation coefficients were still fairly low (Table 2,
columns 5–8). This was probably the result of several factors. One
factor degrading the correlation coefficient was motion of the mouse
between (and during) the DCE-MRI acquisitions of the two contrast
agents. This might be partly prevented by better fixation of the animal
or by a respiration triggered acquisition. Respiration triggering would
require a more sophisticated method coping with the impaired steady
state of the FLASH acquisition due to nonconstant TR. A saturation-
recovery prepared FLASH acquisition might be a good method of choice
[24]. This would however lead to a decreased temporal and/or spatial
resolution.

The procedure for AIF scaling is another source of inaccuracy of the
perfusion parameter estimates. It might be too simplistic to assume the
same ve+ vp for the erector spinae muscle of all mice, even if the same
measurement conditions are kept. Also, the reference literature based
value for ve+ vp might deviate from the true value. The literature va-
lues for skeletal muscles vary in a fairly wide range depending on the
measurement method and the physiological state of the tissue. These
scaling factor errors might be the reason for high ve values, especially
visible for mice 1 and 2 in Fig. 6 where ve > 1 for some voxels. Another
possibility would be scaling with respect to the “tail” level of a mea-
sured AIF. This approach was not reliable here due to a high variability
in the arterial signal related mostly to its variable contamination by the
partial volume effect and motion artifacts.

The reliability of the present blind deconvolution method might be
further improved in several ways. A reparametrization of the applied
pharmacokinetic model might help to improve the conditioning of the
blind deconvolution process. Another possibility is to find a more rea-
listic AIF model with parameters of a known physiological range con-
nected with application of constraints on these parameters. To use more
additional information, a combination of DCE-MRI with another MRI
technique, such as DSC-MRI, might be considered [46].

The choice of the model might be another source of inaccuracy. The
ATH model (implemented as a constrained DCATH model) was chosen
as one of the available 4-parameter models. Other 4-parameter models
include the 2CXM, TH and DP models. The 5-parameter models, such as
the DCATH and GCTT models, were not considered due to the poten-
tially worse conditioning of the approximation problem [35]. The
choice of the ATH model was motivated by our previous comparisons of
the 2CXM versus ATH in the context of blind deconvolution [43,47].
The ATH model could be also implemented as a constrained GCTT
model. Whether the constrained GCTT model, the TH or DP model
would lead to more reliable results is an open question to be addressed.
These models are more realistic and might lead to better results, pro-
viding that the complexity of their corresponding criterial functional is

comparable with the used ATH model.
In summary, we believe that this study may contribute to the ac-

ceptance of blind deconvolution for AIF estimation in small animal
DCE-MRI. Our results showed that reliable perfusion parameter esti-
mates can be obtained for a sufficiently high, but still realistic SNR.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.mri.2019.05.024.
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Lack of functional normalisation of
tumour vessels following anti-angiogenic
therapy in glioblastoma
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Abstract

Neo-angiogenesis represents an important factor for the delivery of oxygen and nutrients to a growing tumour, and is

considered to be one of the main pathodiagnostic features of glioblastomas (GBM). Anti-angiogenic therapy by vascular

endothelial growth factor (VEGF) blocking agents has been shown to lead to morphological vascular normalisation

resulting in a reduction of contrast enhancement as seen by magnetic resonance imaging (MRI). Yet the functional

consequences of this normalisation and its potential for improved delivery of cytotoxic agents to the tumour are not

known. The presented study aimed at determining the early physiologic changes following bevacizumab treatment.

A time series of perfusion MRI and hypoxia positron emission tomography (PET) scans were acquired during the first

week of treatment, in two human GBM xenograft models treated with either high or low doses of bevacizumab.

We show that vascular morphology was normalised over the time period investigated, but vascular function was not

improved, resulting in poor tumoural blood flow and increased hypoxia.
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Introduction

Glioblastomas (GBMs) are highly heterogeneous
tumours, characterised by angiogenesis and necrosis.1

In 2009, the FDA approved bevacizumab, a monoclo-
nal antibody against circulating vascular endothelial
growth factor (VEGF), for second line treatment of
patients with recurrent GBM. The accelerated approval
was granted on the basis of two single arm trials, show-
ing strong radiological responses in comparison to his-
torical data,2,3 assessed by the Macdonald criteria.4

However, although progression-free survival (PFS)
was prolonged, bevacizumab treatment did not
improve overall survival (OS), when given alone or in
combination with traditional chemotherapeutic regi-
mens, whether for recurrent or newly diagnosed
GBM.5–7 The radiological response was attributed to
a reduced blood brain barrier (BBB) permeability,
rather than a true anti-tumour effect.8 Several clinical

trials in recurrent GBM have also attempted to com-
bine bevacizumab therapy with alternative chemother-
apeutic regimens.9,10 The phase II BELOB trial,
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for example showed improved OS in patients treated
with a combination of lomustine and bevacizumab.10

Unfortunately, a subsequent randomised phase III trial
did not validate these results, leaving the future of anti-
angiogenic treatment in GBM highly uncertain.11

According to Folkman’s hypothesis, anti-angiogenic
therapy should prevent the formation of new blood
vessels, leading to a nutrient- and oxygen-deprived
tumour that subsequently ceases to progress.12 As
tumour vessels are highly irregular, tortuous and
leaky, the delivery of oxygen and nutrients is inefficient.
Jain et al. proposed that anti-angiogenic therapy may
lead to a transient window of tumour vessel normalisa-
tion, shortly after treatment initiation, with increased
pericyte coverage and a thickening of the basal mem-
brane, resulting in increased blood flow with improved
oxygen and drug delivery.13,14 In GBMs, preclinical
studies have suggested that VEGF receptor 2 blockade
can normalise the tumour vessels transiently by up-
regulating angiopoietin 1 (Ang-1), leading to the stimu-
lation and recruitment of pericytes with an increased
tumour perfusion and decreased hypoxia.15 It has also
been proposed that this normalisation leads to a
decreased interstitial pressure that facilitates drug deliv-
ery and an improved tumour oxygenation that
increases tumour sensitivity to radiation.16,17 In con-
trast, other studies indicate that anti-angiogenic treat-
ment may lead to a reduced drug delivery caused by a
restoration of the BBB.18,19 Support for the former
view is found among a subset of patients treated with
cediranib, a VEGFR tyrosine kinase inhibitor (TKI),
where increased tumour perfusion was observed in
some patients.20–22

The proposed window of vascular normalisation is
expected to occur transiently during the first days of
treatment. In previous studies, our group has shown
that bevacizumab treatment leads to morphological
vessel normalisation without an increase in blood flow
in human GBM patient-derived xenograft (PDX)
models.23,24 Since blood flow was evaluated several
weeks after the initiation of the treatment, the transient
window of vascular normalisation might have been
missed in these studies. We thus designed the present
study to establish whether our clinically relevant PDX
models display such a window of vascular normalisa-
tion or not, by repeatedly assessing perfusion param-
eters during the early courses of bevacizumab
treatment. We used two different models displaying
the properties of a purely angiogenic and a mixed
angiogenic/infiltrative phenotype, closely mimicking
the features of clinical GBM. The animals were treated
with bevacizumab in doses equivalent to their clinical
counterparts or in lower doses to see whether tumour
vessel normalisation represents a dose-dependent effect.
Dynamic Contrast Enhanced magnetic resonance

imaging (DCE-MRI) and histological analysis were
used to assess vessel morphology and function, and
Fluorine-18 Fluoromisonidazole (18F-FMISO) PET
was used to assess tumoural hypoxia.

The results presented here do not support the
hypothesis that bevacizumab treatment causes a transi-
ent window of normalisation of tumour vessels func-
tion during the early stages of treatment. Instead,
tumoural blood flow remained heterogeneous and inef-
ficient during the period analysed. Moreover,
18F-FMISO PET imaging showed a progressive
increase in hypoxia in bevacizumab treated tumours,
consistent with the reduced blood flow observed by
magnetic resonance imaging (MRI).

Materials and methods

Xenograft models

A total of 37 nude male or female adult rats (rnu-/rnu-
Rowett) were used for the studies (29 in the perfusion
study and 8 in the hypoxia study). Group sizes were
calculated according to expected variance in tumours
growth, on the basis of previous similar studies.
Animals were grouped in cages, fed ad libitum with
standard food pellets, and their welfare was monitored
through daily routine checks with increased daily fre-
quency as animals were approaching the end stage. We
used GBM spheroids generated from two different
patients, Patient 3 (P3) and Patient 13 (P13) as previ-
ously described.25 Tumour tissue was harvested during
surgery and subsequently serially transplanted orthoto-
pically in the animals. The tumours were passaged for
either 32 (P3) or 7 (P13) generations in vivo. Both these
models have been characterised in detail and recapitulate
patient GBMs features by showing vascular prolifer-
ation, diffuse tumour cell infiltration and pseudo-
palisading necrosis.26 They have the following genomic
characteristics; P3:þ [Chr 7, Chr19, 20q], - [1q42-q43,
Chr9, Chr10, 20p] – [PIK3R1, CDKN2A/B];
P13:þ [Chr7, Chr19, Chr20], - [6q16.2-16.3, Chr10,
17q12], – CDKN2A/B.27 P13 is a highly angiogenic
model with pronounced necrosis and little invasion. It
displays contrast enhancement on T1-weighted images
after injection of a gadolinium-based contrast agent,
and responds to bevacizumab by a strong reduction in
contrast enhancement. In comparison, P3, which is
angiogenic as well, is more invasive and displays a less
aggressive progression. It responds to bevacizumab by
reduced contrast enhancement too, and has also been
shown to increase glycolytic activity and invasion.23,24

Pimonidazole staining shows increased hypoxia after
bevacizumab treatment in both models. The key histo-
logical features of the P3 and P13 animal models are
summarised in online Supplementary Figure S1.
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The collection of biopsy tissue was approved by the
regional ethical committee at the Haukeland University
Hospital, Bergen, Norway (REK 013.09).

Intracranial implantation

All animal experiments were performed within a facility
that was recently certified by the Association for
Assessment and Accreditation of Laboratory Animal
Care (AAALAC) International. All experiments were
done in accordance with the Norwegian Animal Act.
The protocols were approved by the Animal Welfare
Body of the University of Bergen, and are in compli-
ance with the ARRIVE guidelines (www.nc3rs.org.uk/
arrive-guidelines). P3 or P13 spheroids were implanted
stereotactically into the brains of nude immunodeficient
rats, as described previously.28 A burr hole was made
3mm lateral and 1mm posterior to the bregma on the
right side and the spheroids were injected 3.5mm below
the cortical surface. The animals were euthanized when
neurological signs were evident, by CO2 inhalation, and
perfused intracardially with 0.9% NaCl. The brains
were removed, the caudal half was fixed in formalin
and further processed for histological and immunohis-
tological examination.

Bevacizumab treatment

Treatment was initiated once the tumours reached an
average size of about 50mm3 as measured by MRI
(typically 3 weeks after implantation for P13 and 4
weeks for P3). Animals were then divided randomly
into treatment groups or controls. Bevacizumab
(Avastin, Genentech, San Francisco, CA, USA) was
injected i.v twice a week, at 10mg/kg (high dose) or
5mg/kg (low dose). The control animals received i.v
saline following the same schedule. Separate groups
of P13 implanted animals were used for the perfusion
MRI studies and the hypoxia PET studies. The generic
design of the studies is summarised in online
Supplementary Figure S2, together with the number
of animals used in each study.

Immunohistochemistry

Immunohistochemistry was performed as described
previously.24 Paraffin-embedded formalin-fixed tissue
sections were de-paraffinized and brought to a tempera-
ture of 99�C for 20min using a 10mM citrate buffer at
pH 6.0 or incubated with proteinase K diluted in
0.05M Tris-Cl, at pH 7.5 and a temperature of 37�C
for 10min. The following primary antibodies were used
during sections incubation: anti-von Willebrand factor
(vWf) (1:1000; A0082; DAKO; Oslo, Norway), pimo-
nidazole (1:200; Hypoxyprobe 9.7.11; HPI Inc;

Burlington, MA, USA) and anti-human nestin
(1:1000; MAB5326; Millipore; Billerica, MA, USA).
Incubation of primary antibodies lasted 90min at RT.
A biotinylated secondary antibody (Vector
Laboratories, Trondheim, Norway) was used for detec-
tion, amplified with Vectastain ABC Reagent (Vector).
Development of the sections was done with 303-diami-
nobenzidine (DAB, DAKO Cytomation), according to
the manufacturer’s instructions. Pictures were
obtained using a Nikon light microscope (Nikon
Eclipse E600) and Nikon imaging software (Nikon
NIS Elements v 4.11).

MRI

MRI was used to screen the animals after implantation
and randomly split them into treatment and control
groups according to tumour volumes. Extensive MRI
sessions, including perfusion series, were then con-
ducted longitudinally throughout the treatment.
Images were acquired on a 7T horizontal
PharmaScan (Bruker Biospin) using either a quadratic
volume coil or a four-channel surface coil designed for
rat brain imaging. Animals were placed prone in a
cradle and kept asleep with gas anaesthesia. We used
1–2% isofluorane mixed with 50% air for the first series
of experiments, then switched to 50% O2 or 1–3% sevo-
fluorane mixed with 100% O2, following an institu-
tional decision motivated by animals stability,
accelerated recovery, and unchanged blood flow and
oxygenation. To avoid introducing experimental bias,
groups compared within a study were always anesthe-
tised with the same gas at all time points throughout the
study. Body temperature was kept constant at 37�C and
breathing was monitored throughout the scan sessions.
The following acquisition parameters were used: (1) T2-
weighted (T2w): method RARE, spatial resolution
(SR) 137 mm� 137 mm� 1000 mm, echo time (TE)
36ms, repetition time (TR) 3500ms, rare factor (RF)
8, averages (AVG) 3; (2) T1-weighted (T1w): method
RARE, SR 137 mm� 137 mm� 1000 mm, TE 9ms, TR
1000ms, RF 4, AVG 4; (3) Diffusion Weighted Imaging
(DWI): method DtiEpi, SR 125mm� 125 mm�
1000 mm, 3 directions, 6 b-values per direction from 0
to 1664 s/mm2; (4) Dynamic Contrast Enhanced
(DCE): method FLASH, SR 156mm� 156 mm�
1000 mm, TE 2.1ms, TR 8ms, FA 17�, time resolution
0.7 s, total scan time 1204800, Contrast Agent 0.1mmol/
kg of Omniscan (GE Healthcare) injected intravenously
after 2500. The animals were scanned every other day for
8 days, and treatment was started after the first scan
(Day 1).

Analysis of the MRI data was performed in
Paravision 5.1 (Bruker Biospin) and with routines
custom developed in Matlab 2015b (MathWorks,
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MA, USA) and C. Specifically, the perfusion analysis
was based on the pharmacokinetic modelling of the
DCE-MRI data using the adiabatic approximation of
the tissue homogeneity model and blind deconvolution
arterial input functions (AIFs), as described previ-
ously,23,29 to separate the contributions of perfusion
and vessels permeability changes to tumour physiology.
The blind deconvolution AIFs were scaled so that a
value known from the literature (12.8mL/100mL for
the interstitial spaceþ plasma fraction) was achieved
for the reference tissue (left and right temporalis mus-
cles).23 Datasets that displayed poor signal-to-noise
ratio (SNR) as a result of sub-optimal experimental
conditions such as incomplete injection of the contrast
agent or excessive rat motion, were excluded from the
quantification. Tumour volume (TV) was defined as the
part of the tumour visible on MRI, and measured by
delineating tumour on consecutive 2D T2-weighted sec-
tions, multiplied by section thickness. Growth rate
(GR) was calculated using the TV measurement at the
first and last time points as GR¼ 100� log (TVf/TV0) /
(tf�t0), where TVf and TV0 are the tumour volumes
at the last and first time points, respectively, and tf �
t0 is the difference in days between the time points.
Tumour volumes are expressed in mm3 and GR in ‘%
per day’.

PET/CT imaging and data analysis

In vivo tumour hypoxia was evaluated by PET using in-
house produced 18F-fluoromisonidazole (18F-FMISO)
(ABX GmBH, Radeberg, Germany). PET/CT images
were acquired on a small-animal nanoScan PET scan-
ner (Mediso Medical Imaging Systems, Budapest,
Hungary). An activity of �30MBq (31.8� 4.1) of
18F-FMISO was injected in the tail-vein and the rats
were left awake for 120min prior to a 30min acquisi-
tion scan (coincidence 1:5, normal count mode) as pre-
viously described.24 Animals were anesthetised with 3%
sevofluorane mixed in air throughout the scans, and
monitored for breathing and temperature. CT semi-
circular scans (50 kVp, 300ms, 480 projections) were
performed for anatomical reference and attenuation
correction of PET images. PET reconstruction was per-
formed by Nucline nanoscan (Mediso Medical Imaging
Systems) from list-mode using the following param-
eters: reconstruction algorithm Tera-Tomo 3D, full
detector model, 4 iterations/6 subsets, 1:3 coincidence
mode and a voxel size of 0.4mm.

The images were quantified using InterView Fusion
v3.01 (Mediso Medical Imaging Systems). A 3mm
sphere-shape volume of interest was placed in both
the tumour and the contralateral hemisphere to calcu-
late tumour-to-brain ratios using standard uptake value
(SUV) mean.

Statistics

Individual animals were used as observations when
assessing tumour volumes and tumour voxels were
used as observations when assessing perfusion param-
eters, to account for the heterogeneity within the
tumours. Mean values for each time point are reported
for the treated and control animals. A Student’s t-test
was used to assess the statistical significance of differ-
ences between groups, calculated in Matlab
(MathWorks). p Values< 0.05 were considered statis-
tically significant.

Results

Tumour progression

Twenty-nine animals were used in the perfusion MRI
studies, split for both the P3 and P13 models into con-
trols versus treatment groups, as detailed in online
Supplementary Figure S2. MRI showed a continuous
growth in both tumour models during the time period
of 1–8 days, for both the controls and the bevacizumab
treated tumours in P13 implanted animals (Figure 1(a)
and (b)) and P3 implanted animals (Figure 1(e) and (f)).
Tumour volume progression during that time window
was exponential for all models and treatment groups
(Figure 1(c) and (g)). Quantification of tumour volumes
indicated a tendency toward lower growth rate in the
bevacizumab treated group compared to the controls
for the P13 model (12%� 2% versus 16%� 2% per
day) (Figure 1(d)). Changes were however not statistic-
ally significant for the small cohorts used. For the P3
implanted animals, the tendency toward smaller growth
rate in the treated animals was less pronounced
(12%� 3% vs. 14%� 4% per day) (Figure 1(h)), sug-
gesting a weaker response to bevacizumab at the onset
of treatment, possibly due to the less angiogenic and
more infiltrative nature of this model. The changes were
nevertheless not statistically significant either in the
cohorts used.

We also acquired DWI data at each time point and
calculated apparent diffusion coefficients (ADC), which
have previously been related to cellularity, to see if lon-
gitudinal changes in ADC could inform us on a pos-
sible increase of the infiltrative compartment of the
tumours. ADC was however stable for both tumour
models over the time period investigated and no statis-
tically significant changes were observed (data not
shown).

Morphological normalisation of tumour vessels

DCE-MRI was used to obtain quantitative values of
perfusion and vessel permeability parameters over
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Figure 1. Tumor size evolution: Representative cases of tumour evolution for the animals implanted with the angiogenic P13

phenotype, showing one control (a), and one animal treated with high doses of bevacizumab (b). Images represent T2 weighted MRI

acquisitions (top rows) and contrast enhanced T1 weighted MRI (bottom rows). Quantification of corresponding tumour volumes (c)

and growth rates (d) for P13 animals per group. Whiskers boxes show percentile 25, median and percentile 75 values. Representative

cases of tumour evolution for the animals implanted with the more infiltrative P3 phenotype, showing one control (e), and one animal

treated with high doses of bevacizumab (f). Quantification of corresponding tumour volumes (g) and growth rates (h) for P3 animals

per group. Tumour volumes show an exponential progression in all groups for P13 (c) and P3 (g) during the time window of

observation. Growth rates were higher for controls than for bevacizumab treated animals in both the P13 (d) and the P3 (h) tumour

models, and this difference was more pronounced for the more angiogenic P13 tumour model. Tumour volumes expressed in mm3

and growth rates in % per day. Animals per group: P13 Controls-5, P13 Bev high-5, P3 Controls-5, P3 Bev high-6. High dose: 10 mg/kg.

(Scale bars:� SE).
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time, and to assess if anti-angiogenic therapy induces a
window of normalisation of tumour vessels for the two
GBM models used. For the more angiogenic model
(P13), high and low doses of bevacizumab were used
to further evaluate whether this putative normalisation
was associated with a dose-dependent effect. Mean
tumour values as well as tumoural (voxels) values
were examined to account for the spatial heterogeneity
of the parameters within the tumour.

We observed that tumour blood volume (Vb)
increased over time in the control (untreated) animals
for the angiogenic P13 model, as illustrated by one rep-
resentative animal in this group (Figure 2(a), top line).
This increase was less pronounced in the treated ani-
mals, whether given high doses (10mg/kg) or low doses

(5mg/kg) of bevacizumab (Figure 2(a), middle and
bottom lines). Quantification of the mean tumoural
Vb (Figure 2(b), top line) revealed a steady progression
over time in the control animals, and for the treated
animals a reduction first, followed by a steady progres-
sion. In comparison to controls, tumoural Vb mean
values in the treated animals were 39% and 46%
lower on Day 5/6 for the animals treated with 10mg/
kg doses of bevacizumab (Bev high) and those treated
with the 5mg/kg doses of bevacizumab (Bev low)
groups, respectively (p< 0.001). Histogram analysis of
tumoural Vb values distribution (Figure 2(b), bottom
line) showed a progressive increase in the fraction of
high Vb values (dark blue) compared to medium Vb

(hatched blue) and low Vb (light blue) values over

Figure 2. Tumoural blood volume evolution. (a) Illustrative maps of blood volume (Vb) evolution for animals implanted with the

highly angiogenic P13 tumour model, showing one control (top line) and two animals treated with respectively high and low doses of

bevacizumab (middle and bottom lines). (b) Quantification of tumour mean Vb for P13 animals (top line) and histogram analysis of

tumoural Vb values distribution (bottom line). In comparison to controls, animals treated with bevacizumab high or low doses, show a

reduced tumour mean Vb and a reduced fraction of high Vb values shortly after the start of the treatment, suggesting a normalisation

of blood vessel morphology. Similar results are observed for the less angiogenic more infiltrative P3 model (c and d), where the

normalisation window extends throughout the whole observation period. Vb expressed in absolute values of mL/100 mL of tissue.

Thresholds for the high, medium and low values (dark, hatched and light blue/red) were defined by the 75% and 25% percentiles of the

whole voxel population for the given tumour model. Animals per group: P13 Controls-5, P13 Bev high-5, P13 Bev low-5, P3 Controls-

7, P3 Bev high-7. Bev high: 10 mg/kg, Bev low: 5 mg/kg.
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time for the control animals. In the animals treated
with high or low doses of bevacizumab, a reduction
of the fraction of high Vb values was observed early
after the start of the treatment, suggesting a possible
morphological normalisation effect caused by the
treatment.

For the less angiogenic and more infiltrative P3
model, tumour Vb also increased steadily over time
for the control animals (Figure 2(c)), with mean
tumour Vb and distribution showing more fluctuations
(Figure 2(d)). For animals treated with high doses of
bevacizumab, the normalisation effect suggested by
progressive decrease of mean tumoural Vb and progres-
sive reduction of the fraction of high Vb values, lasted

throughout the whole observation period. In compari-
son to controls, mean tumoural Vb in the treated ani-
mals was 82% lower on Day 7/8 (p< 0.001).

The permeability of blood vessels was also assessed,
using the permeability surface (PS) area product par-
ameter that represents the product of the permeability
(leakiness) of vessel wall by the area of vessel wall.
Similarly to Vb, PS increased in the P13 control animals
(Figure 3(a), top line). Quantification of mean
tumoural PS (Figure 3(b), top line) revealed a sustained
progression of this parameter over time in this group,
with a progressive increased fraction of high PS values
(Figure 3(b), bottom line). For the animals treated
with bevacizumab, PS was more stable over time

Figure 3. Tumoural vessel permeability evolution. (a) Illustrative maps of the permeability surface area product (PS) evolution for

animals implanted with the highly angiogenic P13 tumour model, showing one control (top line) and two animals treated with

respectively high and low doses of bevacizumab (middle and bottom lines). (b) Quantification of tumours mean PS for P13 animals (top

line) and histogram analysis of tumoural voxels PS distribution (bottom line). In comparison to controls, animals treated with

bevacizumab high or low doses, show a reduced tumour mean PS and a reduced fraction of high PS voxels shortly after the start of the

treatment, again suggesting a normalisation of blood vessel morphology. For the less angiogenic, more infiltrative P3 model (c and d),

the normalisation window extends throughout the whole observation period. Datasets displaying poor SNR as a result of experi-

mental conditions, such as on Day 1 for the represented P3 Control (C), were not considered in the quantification. PS expressed in

absolute values of mL/min/100 mL of tissue. Thresholds for the high, medium and low values (dark, hatched and light blue/red) were

defined by the 75% and 25% percentiles of the whole voxels population for the given tumour model. Animals per group: P13 Controls-

5, P13 Bev high-5, P13 Bev low-5, P3 Controls-7, P3 Bev high-7. Bev high: 10 mg/kg, Bev low: 5 mg/kg.
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(Figure 3(a), middle and bottom lines). Quantification
of mean tumoural PS for the animals treated with
high doses of bevacizumab showed a reduction
first, followed by a steady increase (Figure 3(b), top
line), similar to what was observed for the tumoural
blood volumes (Figure 2(b), top line). In comparison
to controls, PS in this treatment group was 52%
lower on Day 5/6 (p< 0.001). The distribution of
tumoural PS (Figure 3(b), bottom line) showed a reduc-
tion of the high PS values fraction first, followed by
a steady increase, again suggestive of a transient
normalisation of this parameter following anti-
angiogenic therapy. This effect was less pronounced
for the animals treated with the low dose of
bevacizumab.

For the less angiogenic, more infiltrative P3 model
(Figure 3(c)), mean tumour PS also increased steadily
in the controls and was more stable for the animals
treated with high doses of bevacizumab (Figure 3(d),
top line). In comparison to controls, PS in the treat-
ment group was 82% lower on Day 7/8 (p< 0.001). The
distribution of tumoural PS values showed a progres-
sive increase of the fraction of high PS values in the
controls, and a more stable or slightly decreasing frac-
tion of high PS values in the bevacizumab treated ani-
mals (Figure 3(d), bottom line).

In many studies on brain tumour perfusion, Ktrans, a
parameter that represents the outflow of contrast agent
from the vascular compartment to the tissue is used, to
provide an indication of vessel permeability. It should
however be noted that Ktrans is also influenced by blood
flow. This makes interpretation of changes in this par-
ameter more complex, especially in studies involving
treatments with anti-angiogenic agents that are
known to interfere with vessel permeability. PS, on
the contrary, is independent of blood flow, such that
changes in PS more accurately reflect changes in the
permeability of blood vessels. Nevertheless, the longi-
tudinal changes in Ktrans in our study closely followed
those of PS (online Supplementary Figure S3). Thus,
changes in vessel permeability, when further used in the
text, can here indifferently be regarded as referring to
changes in PS or Ktrans.

Details of mean tumour Vb, PS and Ktrans for all
time points are provided in online Supplementary
Tables S1 and S2, together with the ratio of values
for bevacizumab treated versus control animals and
associated p-values.

In summary, the longitudinal study on changes in
blood volume and vessel permeability parameters sug-
gests a morphological normalisation of the blood ves-
sels early after the start of the anti-angiogenic therapy,
whether given in high or low doses, for both the more
angiogenic and the less angiogenic, more infiltrative,
tumour phenotypes used in this study.

Functional normalisation of tumour vessels

For the P13 model, blood flow (F) fluctuated over time
in the tumours of the control animals (Figure 4(a), top
line), with a tendency of mean tumour F to slightly
increase over time (Figure 4(b), top line), and a progres-
sive increase of the high F voxels fraction (Figure 4(b),
bottom line). In the treated animal groups, tumour F
values fluctuated but to a lesser extent compared to
controls (Figure 4(a), middle and bottom lines). In
comparison to controls, animals treated with high
doses of bevacizumab showed a more stable but lower
increase in mean tumour F values (fluctuating
fromþ 47% to �6% during the observation window)
and the fraction of high F values increased slightly
(Figure 4(b)). For the animals treated with low doses
of bevacizumab, the mean tumour F values kept fluc-
tuating over time and also increased less than for the
controls. Mean tumour F ranged fromþ 47% to �39%
in comparison to controls (with varying p-values at
each time point) during the observation window. The
distribution of F values also fluctuated over time with
no clear evolutionary trend (Figure 4(b)).

For the P3 control animals (Figure 4(c), top line),
both the mean tumour F and the fraction of high
tumour F increased over time (Figure 4(d)). For the
animals treated with high doses of bevacizumab
(Figure 4(c), bottom line), mean tumour F values
remained stable over time and was significantly lower
than controls (down to 45% of controls on Day 7/8,
p< 0.001). The fraction of high F values remained con-
stant during the observation window (Figure 4(d)).

Details of mean tumour F for all time points are
provided in online Supplementary Tables S1 and S2,
together with the ratio of values for bevacizumab trea-
ted versus control animals and associated p-values.

We also quantified perfusion parameters in other
regions to verify the consistency of the results obtained.
Assessment of perfusion parameters in the contralateral
brain is challenging because an uncompromised BBB
results in limited leakage of the contrast agent and
poor SNR with the method used. Quantification results
in this region are therefore to be considered with cau-
tion. We thus additionally quantified perfusion param-
eters in the temporalis muscle where the SNR is much
higher. Overall F, Vb and PS remained stable and
homogeneous over time in the muscle. In comparison
to tumours, F and Vb had a similar range of values
while PS was higher in the muscles than in the tumours,
for both models. All perfusion parameters seemed unaf-
fected by the treatment in the muscles while they were
reduced in the treated tumours. In the contralateral
brain, F, Vb and PS also remained rather stable and
homogeneous over time and were not affected by the
treatment. Most parameters were significantly lower in
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the brain than in the tumours. A rigorous comparison
would however be hazardous given the somewhat unre-
liability of parameters estimation in this region with
poor SNR.

In summary, the results presented here demonstrate
that anti-angiogenic therapy causes a morphological
normalisation of blood vessels, evidenced by a statistic-
ally significant decrease in tumoural blood volume and
vessel permeability, early after the start of the treat-
ment. In this time window however, no functional nor-
malisation was observed in the tumours of the treated
animals that would have resulted in an improved
blood flow. Instead, tumoural blood flow remains het-
erogeneous over time, and shows no improvement in
comparison to the values observed for the control
animals.

Hypoxia

Eight animals implanted with the angiogenic model P13
were used in the PET study, split in controls versus
treatment group (bevacizumab high doses). Hypoxia
was assessed by 18F-FMISO PET. The signal obtained
with this tracer is indeed from hypoxic regions and not
healthy tissue since the tracer freely diffuses into all
tissues but is only trapped in hypoxic tissue. The opti-
mal timing between injection of the tracer and acquisi-
tion was determined from dynamic scans in pilot
studies. Longitudinal PET imaging with 18F-FMISO
on Day 1, 3, 7 and 12 after treatment start demon-
strated a slow increase of the tracer in the control
group (Figure 5(a), top line). The uptake of the tracer
was strikingly faster in the bevacizumab treated

Figure 4. Tumoural blood blow (F) evolution. (a) Illustrative maps of F evolution for animals implanted with the highly angiogenic P13

tumour model, showing one control (top line) and two animals treated with respectively high and low doses of bevacizumab (middle

and bottom lines). (b) Quantification of tumour mean F for P13 animals (top line) and histogram analysis of tumour F value distribution

(bottom line). In control animals, F is heterogeneous and shows a tendency to increase over time. For animals treated with high or low

doses of bevacizumab, F is not improved in comparison to controls and the distribution remains heterogeneous. Similar results can be

observed for the less angiogenic more infiltrative P3 model (c and d), suggesting that the morphological normalisation does not result

in a functional normalisation with improved and homogenous blood flow. F expressed in absolute values of mL/min/100 mL of tissue.

Thresholds for the high, medium and low values (dark, hatched and light blue/red) were defined by the 75% and 25% percentiles of the

whole voxels population for the given tumour model. Animals per group: P13 Controls-5, P13 Bev high-5, P13 Bev low-5, P3 Controls-

7, P3 Bev high-7. Bev high: 10 mg/kg, Bev low: 5 mg/kg.
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animals (Figure 5(a), bottom line), accelerating after a
few days of treatment. Quantification of the tracer
uptake (Figure 5(b)), using the tumour-to-brain ratio
of the mean SUV, further confirmed the results. The
poor oxygenation of the tumour evidenced here after
anti-angiogenic therapy is consistent with the poor
tumour perfusion and lack of functional normalisation
showed by MRI.

Discussion

As several clinical trials have shown no improvement in
OS after treatment of GBM with anti-angiogenic ther-
apy, the focus has now shifted to the identification of
the mechanisms of treatment resistance and potential
bio- and imaging markers for a subgroup of patients
that may respond to this therapy.

Traditionally, the proposed mechanism of action
of anti-angiogenic treatment was an inhibition of
tumour vessel growth, depriving the tumour of nutri-
ents and oxygen.12 The vascular normalisation hypoth-
esis emerged as an alternative mechanism of action,
through which normalised vessels would lead to an
improved blood flow and oxygenation of the
tumour.13,14

Our group has previously shown that anti-angio-
genic treatment with bevacizumab decreases contrast
enhancement and blood supply to the tumour in clin-
ically relevant GBM xenografts, increasing hypoxia
and invasion.23 These studies focused on the long-
term effects of the therapy, assessed after 3 weeks of
treatment with a dose of 10mg/kg given twice a week.
No information was provided then about the short-
term effects of the therapy and the possible existence
of a window of vascular normalisation early after treat-
ment. In the present work, we addressed this issue by
determining dynamic changes in brain tumour perfu-
sion parameters induced by bevacizumab over time,
assessed within the first week of treatment. We show
that, during this time window, bevacizumab treatment
tends to slow down tumour growth, with a more pro-
nounced effect in the purely angiogenic phenotype com-
pared to the mixed angiogenic/infiltrative phenotype.
This may reflect an initial treatment response, before
adaptation mechanisms occur. We have also previously
shown that bevacizumab treatment can lead to an up-
regulation of glycolysis, increased lactate accumulation
and invasion of tumour cells, possibly highlighting an
adaptation mechanism that enables a more infiltrative
tumour growth.23,24

Using DCE-MRI perfusion analysis, we show that
treatment with both high (10mg/kg) and low (5mg/kg)
doses of bevacizumab leads to a transient normalisa-
tion of the vessel morphology, evidenced by stable or
marginally decreased blood volume values, and further
confirmed this by immunohistochemistry and hist-
ology. The treatment also caused a strong decrease in
tumour vessel permeability parameters, evidenced by
the permeability surface area product PS and the
vessel-to-tissue transfer constant Ktrans that character-
ises the transport of contrast-agent across the capillary
endothelium.30 At the same time, blood flow did not
improve during the time window of the treatment, and
remained heterogeneous as evidenced by histogram
analysis. This suggests that the morphological normal-
isation of blood vessels induced by anti-angiogenic
therapy was not sufficient to achieve a functional nor-
malisation. The same results were achieved for the two
PDX used in the study, which have previously been
shown to display purely angiogenic or mixed angio-
genic/infiltrative phenotypes.31 Taken together, these
results suggest that poor tumour perfusion and reduced
vessel permeability after anti-angiogenic therapy are
likely to impede systemic drug delivery, possibly
explaining the disappointing results of combined anti-
angiogenic/chemotherapy regimens in the clinic so
far.5–7,10

The method used for perfusion analysis dictates
to a large extent the interpretation of putative
results obtained. Several reports on the effects of

Figure 5. Tumoural hypoxia evolution. (a) Representative

images of the longitudinal changes in hypoxia for P13 animals,

assessed 18F-FMISO PET, illustrate the high increased uptake of

this tracer following treatment with bevacizumab (high dose)

compared to the controls. SUV in arbitrary units. (b)

Quantification of the ratio of 18F-FMISO standard uptake value

(SUV) in tumour versus brain confirms these findings. The fol-

lowing numbers of animals were used (Controls: 4, Bev 10 mg/kg:

4). (Scale bars: SEM).
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anti-angiogenic therapy in the brain have used DSC-
MRI, a data acquisition method commonly used in
the clinic. This approach suffers from the limitation
that only relative perfusion parameters can be derived.
With this method, blood vessels are also assumed to be
non-leaky, such that pre-loading of contrast agent is
needed to compensate for the leakiness of blood vessels
typically observed in tumours. The contribution of
changes in the permeability of blood vessels to the
observed changes in blood flow is thus difficult to
appreciate with this method. DCE-MRI on the other
hand, provides absolute perfusion parameter estimates.
Most studies conducted with this method have been
based on the (extended) Tofts model for pharmacoki-
netic analysis, which also makes separation of blood
flow from vessel permeability parameter impossible.
DCE-MRI, based on the ATH pharmacokinetic
model as used in the present study, by introducing
one additional parameter in the analysis, makes it how-
ever possible to evaluate blood flow and vessels perme-
ability separately. This observation is of importance in
the context of treatment with anti-angiogenic agents
that are known to modulate the permeability of blood
vessels. More information on the methodology used for
perfusion analysis in this study is provided in the online
Supplementary material, together with examples of raw
signal curves and a discussion on the robustness of the
model.

Finally, whether DSC-MRI or DCE-MRI is used to
derive perfusion parameters maps, averaging blood
flow values over the whole tumour may also hide a
heterogeneous distribution of blood flow values that
would still result in poor perfusion of tumour
sub-regions. Histogram analysis of tumoural perfusion
parameters values makes it possible to capture this
heterogeneity dimension into the analysis, providing
additional information to parameters values averaged
over the whole tumour. Different studies have started
to recognise the role of using histogram and image fea-
tures analysis to account for the spatial heterogeneity of
tumours with benefits related to grading, prognosis and
assessment of therapy responses.32

In support of our results, a recent clinical study
showed no improvement in tumour oxygenation, des-
pite morphological vessel normalisation, assessed in
71 patients with recurrent GBM treated with bevacizu-
mab.33 Using 18F-FMISO PET to assess hypoxia, we
observed an increased uptake of the tracer both shortly
after treatment initiation, and during the first 12 days
of treatment, suggesting that the oxygenation of the
tumour was decreased rather than increased during
the first week of treatment. Poor tumour oxygenation
and hypoxia may also contribute to the poor perform-
ance of anti-angiogenic therapy combined with stand-
ard radio-chemotherapy regimens, by reducing the

efficacy of the radiotherapy part of standard GBM
treatment.

The observation that bevacizumab treatment
decreases contrast enhancement by normalising the
vessel morphology, despite the lack of benefit in OS,
has been considered of high clinical relevance, as it
identified the need for revised radiological response cri-
teria.8,34,35 Consequently, several studies have tried to
identify new radiological biomarkers to predict and
measure treatment responses. Schmainda et al.36

assessed changes in relative cerebral blood volume
(rCBV) by DSC-MRI and found that an early decrease
in rCBV was predictive of improved survival in patients
with recurrent GBM treated with bevacizumab. Other
studies have shown that pre-treatment rCBV is a poten-
tial predictive biomarker for bevacizumab treatment in
patients with recurrent GBM.30 It has also been pro-
posed that markers derived from diffusion weighted
MRI could be used to predict responses to anti-angio-
genic therapies.37,38 ADC has been shown to inversely
correlate with cellularity in the brain,39 providing a
potential indicator of infiltrative tumour progression.
Indeed, in the study we performed on the long-term
effects of bevacizumab,23 ADC was reduced in the per-
iphery of the tumours suggesting an increased tumour
cell infiltration, which was further confirmed by hist-
ology. In the present study, changes in ADC values in
the tumour periphery early after the start of the treat-
ment were only marginal, suggesting that the evolution
to a more infiltrative progression of the tumour is a
process that happens at a later stage, after an initial
adaptation to treatment.

The bevacizumab dose has also been discussed in the
context of vessel normalisation, as it was proposed that
lower doses may be more suitable to normalise vessels.
A recent meta-analysis revealed that there are no dif-
ferences in patient outcome whether treated with
10mg/kg or 5mg/kg,40 supporting our results in the
present study.

In conclusion, in our orthotopic GBM PDX models,
a transient functional window of normalisation of ves-
sels could not be identified following anti-angiogenic
therapy. Blood supply to the tumour remains heteroge-
neous and hypoxia increases while the permeability of
tumoural blood vessels is reduced, shedding a causal
light on the disappointing results of clinical trials
where anti-angiogenic therapies have been combined
with systemic delivery of chemotherapeutic agents.
This study also shows that MRI combined to PET
gives valuable insight into responses to anti-angiogenic
therapies, by assessing physiological changes in the
tumour in addition to the classically used morpho-
logical responses. Such a multimodal imaging approach
thus holds a great potential for assessing responses to
therapy in both pre-clinical and clinical research.
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Purpose: The Tofts and the extended Tofts models are the pharmacokinetic models 
commonly used in dynamic contrast‐enhanced MRI (DCE‐MRI) perfusion analysis, 
although they do not provide two important biological markers, namely, the plasma 
flow and the permeability‐surface area product. Estimates of such markers are pos-
sible using advanced pharmacokinetic models describing the vascular distribution 
phase, such as the tissue homogeneity model. However, the disadvantage of the 
advanced models lies in biased and uncertain estimates, especially when the esti-
mates are computed voxelwise. The goal of this work is to improve the reliability of 
the estimates by including information from neighboring voxels.
Theory and Methods: Information from the neighboring voxels is incorporated in 
the estimation process through spatial regularization in the form of total variation. 
The spatial regularization is applied on five maps of perfusion parameters estimated 
using the tissue homogeneity model. Since the total variation is not differentiable, 
two proximal techniques of convex optimization are used to solve the problem 
numerically.
Results: The proposed algorithm helps to reduce noise in the estimated perfusion‐ 
parameter maps together with improving accuracy of the estimates. These conclu-
sions are proved using a numerical phantom. In addition, experiments on real data 
show improved spatial consistency and readability of perfusion maps without consid-
erable lowering of the quality of fit.
Conclusion: The reliability of the DCE‐MRI perfusion analysis using the tissue 
homogeneity model can be improved by employing spatial regularization. The pro-
posed utilization of modern optimization techniques implies only slightly higher com-
putational costs compared to the standard approach without spatial regularization.

K E Y W O R D S
DCE‐MRI, perfusion parameter estimation, proximal methods, spatial regularization, tissue homogeneity 
model, total variation
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1  |   INTRODUCTION

Dynamic contrast‐enhanced magnetic resonance imaging 
(DCE‐MRI) is becoming an established tool in obtaining in-
formation about tissue perfusion and capillary permeability. 
The trend today is to represent such information as a set of 
images/maps of physiological parameters related to the per-
fusion, for example, blood plasma flow, permeability surface 
area product, and plasma or extracellular‐extravascular‐space 
volumes. The type and number of the parameters represented 
by perfusion maps depend on the pharmacokinetic model 
used. To estimate the perfusion parameters, the respective 
model is typically fitted to the concentration‐time curve of 
each voxel. These curves are calculated from a T1‐weighted 
MR image sequence recorded before, during, and after ad-
ministration of a contrast agent bolus.1

The problem of fitting the concentration‐time curves is 
unfortunately a nontrivial optimization problem due to the 
model nonlinearity, insufficient temporal sampling, poor sig-
nal‐to‐noise ratio, and uncertainties in the model and the mea-
surement. This results in bias and uncertainty in the estimates 
or even wrong estimates because of the presence of local min-
ima. The estimation problems are often categorized as a priori 
structural identifiability and a posteriori identifiability. The a 
priori identifiability is influenced by the nonlinear model struc-
ture itself2-4 and by the experimental design – sampling and 
duration of the experiment.5-10 The a posteriori identifiability 
includes the errors in the measurement – the signal‐to‐noise 
ratio, arterial input function errors, and the inaccuracy of con-
version from the T1‐weighted image sequence to the concen-
tration‐time curves.10-14 Additionally, the local minima may 
also be caused by an improper discretization of the model.15-17

One way to reduce the uncertainties caused by errors is 
an incorporation of a spatial prior into the modeling. Such 
a means of regularization is based on the assumption that 
neighboring voxels in the parameter maps belonging to the 
same tissue should have similar values: that is, the perfusion 
maps should be piecewise smooth. Although using spatial 
priors is usual in image reconstructions including MRI, they 
have been used only occasionally in the DCE‐MRI analysis. 
To the authors’ knowledge, it has been used by only a few 
groups.18-24 The priors in the mentioned papers are based on 
image gradients of perfusion maps except for24 using a wave-
let transform and23 using the difference of the image from its 
denoised variant. The denoising is guided by the input DCE‐
MRI sequence. All three mentioned transformations generate 
so‐called feature images on which a metric is computed to 
express, by one value, the spatial consistency of the voxels. 
The metrics used range from the smoothing �2 norm18,20,22,23 
to an approximation of the edge‐preserving �1 norm.22,24  
The minimization of these spatial‐regularization criterial 
functions is problematic because the voxels cannot be pro-
cessed independently as in the case without the regularization.

Compared to22,24 where an approximate �1 norm was used, 
in the present paper we derive a solution to the strict sparsity‐
inducing �1 norm regularizer operating on image gradients, 
that is, the total variation regularization. This reduces smooth-
ing of edges between different tissues. Since the strict �1 norm 
is not differentiable, we use proximal algorithms25-27 to find 
the numerical solution. They are based on alternating minimi-
zation of the data and regularization terms and are the state of 
the art for solving image‐processing problems such as image 
denoising, deconvolution, or MRI reconstruction. However, 
the adaptation of these algorithms to DCE‐MRI is not straight-
forward, because the data formation model in DCE‐MRI is 
not linear. Motivated by good performance of the Levenberg‐
Marquardt (LM) method28,29 in DCE‐MRI perfusion param-
eter estimation,30,31 we decided to use the proximal Newton 
method26 adapted to employ the LM keeping good conver-
gence and low computational costs. The derived algorithm 
iteratively performs one step of the LM method in each voxel 
followed by an image‐denoising step in all parameter maps.

All the preceding spatial regularization approaches are 
based on the Tofts32 or extended Tofts33 model. On the 
contrary, this paper proposes a spatial regularization for 
DCE‐MRI based on the tissue homogeneity (TH) phar-
macokinetic model.16,34 Use of the TH model provides 
estimates of additional perfusion parameters such as the 
plasma flow and the permeability surface area product, as 
opposed to the use of the Tofts models. But its use is not 
widespread because of its complexity (number of parame-
ters, nonlinearity, a posteriori identifiability). In this paper 
we show that spatial regularization stabilizes the estima-
tion procedure and makes use of such more complicated 
pharmacokinetic models feasible.

2  |   THEORY

2.1  |  Problem description

The goal of the DCE‐MRI analysis is to estimate perfusion 
parameters from a sequence of N images capturing the distri-
bution of the administered contrast agent bolus in time. The 
image intensity values are related to the actual concentration 
of the contrast agent in the voxel. The voxels from a region 
of interest are extracted and rearranged to form a matrix S of 
size I×N (number of selected voxels × number of observa-
tions in time). The values in S can be described by the model

where Si,n is a single measured element of S (ith voxel, nth time 
sample) and S̄i,n is the true value, not distorted by the noise �i,n.  
The noise follows the signal‐dependent Rice distribution,35  

(1)
S

i,n = S̄
i,n+𝜖

i,n, i=0, … , I−1, n=0, … , N−1;

𝜖
i,n ∼Rice

(

S̄
i,n,𝜎R

)

,
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assuming Cartesian imaging for simplicity. Major mathemati-
cal notations used throughout the paper can be found in Table 1.

The intensity values S are transformed to represent con-
centration of the contrast agent S�:

where �i is a nonlinear transformation function derived from 
the precontrast measurements (e.g. with several different flip 
angles);1 thus the additive‐noise model is not exact. The val-
ues S̄𝜙

i,n
 can be modeled as samples of a nonlinear pharma-

cokinetic model c
(

nΔt, pi,⋅

)

. It describes the contrast agent 
concentration within voxel i in time t=nΔt, where Δt is the 
sampling interval, and it is parametrized by the vector pi,⋅ 
of length J, consisting of the perfusion parameters. A con-
sequence of the transformation �i is that the noise ��

i,n
 now 

follows a complicated distribution. Thus, it is usually approx-
imated by normal distribution; that is, ��

i,n
∼N

(

0, �i

)

,∀n, �i 
is noise standard deviation in voxel i, which neglects varia-
tions in time and asymmetry [in the case of low signal‐to‐
noise ratio (SNR < 10 dB)36,37 or for strongly nonlinear �i].

The goal of the DCE‐MRI analysis is to estimate parame-
ters pi,⋅ of the pharmacokinetic model c by fitting it to the curve 
S
�

i,⋅
 in each voxel i. Let p denote the matrix gathering the perfu-

sion parameters such that pi,⋅ is the ith row of p. The maximum a 
posteriori probability estimate p̂ of the perfusion parameters p 
of the size I×J (I – number of voxels, J – number of perfusion 
parameters), assuming Gaussian noise, can be formulated as:

where P is the feasible domain of the perfusion parameters. 
The regularization term � (p) describes the a priori knowl-
edge about the problem and the first term, that is, the data 
term, describes the fidelity of the fit. If no prior information 
is known or available in a suitable form, � is substituted by 
a zero function making the optimization problem to reduce 
to the standard nonlinear least squares problem solvable by 
minimizing f (pi,⋅) independently for each voxel.11,16

2.2  |  Pharmacokinetic model

The core of the functional in Equation (3) is a pharmacokinetic 
model c defined in general by a set of differential equations. 
This model can be transformed to the Laplace domain, where 
it has the form of multiplication of the Laplace spectra of two 
functions: the arterial input function (AIF) describing concen-
tration of the contrast agent in voxels’ arterial input and the 
impulse residue function of the tissue voxel. If both functions 
have a closed‐form expression in the time domain, the model 
can also be represented in the time domain, either as a convo-
lution integral or even better in a closed form.15 If the closed 
forms are not available, as in our case of the TH model, the 
multiplication in the Laplace domain can be transformed to the 
Fourier domain.16 In a discrete setting, the Laplace operator s 
is substituted by the sampling at discrete angular frequencies 
jΔ�w, where Δ� is the sampling angular frequency, w is a vec-
tor of indices, and the model is evaluated as:

where the multiplication of the Fourier spectra of the AIF and 
impulse residue function is elementwise and DFT−1 is the 
inverse discrete Fourier transform. The symbol n represents 
a vector of time indices meaning that the discrete Fourier 
transform returns N values. The vector of frequency indi-
ces is w=

(

0, 1,… ,
(

N� −mod
(

N�, 2
))

∕2
)

, where mod is 
the modulo operation and N′ is the number of time‐domain 

(2)S
𝜙

i,n
=𝜙i

(

Si,n

)

≈ S̄
𝜙

i,n
+𝜖

𝜙

i,n
, ∀ i, n

(3)

p̂ = arg min
p∈PI

I−1
∑

i=0

𝜎−2

i

N−1
∑

n=0

(

S
𝜙

i,n
−c

(

nΔt, pi,⋅

)

)2

+𝜓 (p)

= arg min
p∈PI

I−1
∑

i=0

f
(

pi,⋅

)

+𝜓 (p)

(4)c
(

nΔt, pi,⋅

)

=DFT−1
{

Ca (jΔ�w)H
(

jΔ�w, pi,⋅

)}

T A B L E  1   Mathematical notations

Symbol Description

A, p Matrices

x Vector

xj The jth element of x

Ai,j One element of A in the ith row and the jth column

pi,⋅ The ith row of p

p
⋅,j The jth column of p

Hi The ith matrix from the array of matrices

yk Vector y in the kth iteration

� Constant

p̂, p∗ Estimate, ground truth of p
∣ ⋅ ∣ , ‖⋅‖1 Magnitude of a vector field or a number

�
1 �

1 norm
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samples that guarantee avoidance of the time‐domain aliasing; see  
Refs. 16 and 38. The sampling angular frequency is then 
Δ�=2�∕N�Δt. To use the defined representations of the 
functions, the DFT−1 includes complex conjugate symme-
trization and final truncation to N samples. Additionally, we 
assume that the AIF is represented as a vector of time‐domain 
samples ca (nΔt) that are transformed to the Fourier domain: 
Ca (jΔ�w)=DFT

{

ca (nΔt)
}

 as in Ref. 16 with zero‐padding to 
N′ and the truncation to the half‐spectrum. The impulse residue 
function is represented by the TH model in the Laplace domain, 
HTH (s, p). In comparison with Refs. 16, 39, the parametrization is 
modified and a bolus arrival time is added, p=

{

Fp, Tc, Te, �, �
}

,  
see Table 2 for descriptions. An additional modification is that 
we use a windowed version of the TH model, Hw

TH

(

s, p, tw
)

. 
This speeds up the evaluation keeping the number of samples 
low, N� =3N, limited by the time‐domain aliasing; see Ref. 38 
for more details. The TH model is evaluated as:

where E=1−e−�, kep =E∕
(

Te�
)

 and tw =(N−1) Δt.

2.3  |  Regularization function

The stabilizing factor in Equation [3] is the regularization 
function � (p). Here, we describe the prior knowledge in the 
form of an image prior taking spatial relations of the vox-
els into account. The image prior in the form of a sparsify-
ing �1 norm of a linearly transformed image is a widely used 
option in the image and signal processing community.27,40,41 

The transformation can be, for example, a wavelet transform 
or image gradients. It is in the form of a linear operator A 
transforming the vector of parameters, p

⋅,j, of the length I to 
a domain, where most of the values are close to zero. This so‐
called sparsifying transform A can be represented by a set of V   
matrices Av, v∈{1,… ,V} each corresponding to one sparse 
feature. We suppose the case of the image gradients; that is, 
there are two matrices A=

(

�r,�c

)

 representing forward differ-
ences with respect to rows and columns and taking into account 
the spatial position of the voxels.42 Applying this operator, a 
vector field is obtained. Before the application of �1 norm usu-
ally a magnitude of this vector field is computed (represented 
by |⋅|). This is repeated for J perfusion parameters leading to:

where �j is a regularization weight for particular parameter p
⋅,j.  

The magnitude in the middle term reduces to elementwise 
absolute value, and the square and the square root act ele-
mentwise. The last term represents the discrete isotropic total 
variation regularization used in this paper.

2.4  |  Optimization methods

For the spatially regularized estimation of the perfusion 
maps, we use two proximal optimization methods, the prox-
imal Newton method26 and the primal‐dual algorithm.27 
Both methods are applicable to the class of problems of 
the form

(5)
HTH (s, p)=

Fp

(

1−e−(�+Tcs)
)

(Tc+�Te+TcTes)(�+Tcs)

�

(

1−e−(�+Tcs)
)

+s(Tc+�Te+TcT
e
s)(�+Tcs)

H
w

TH

(

s, p,tw

)

=HTH (s, p)−FpEe−kep(tw−�−Tc) e−stw

s+kep

(6)

� (p) =

J−1
∑

j=0

�
j

‖

‖

‖

∣Ap
⋅,j ∣

‖

‖

‖1
=

J−1
∑

j=0

�
j

I−1
∑

i=0

√

∑

v

|

|

|

A
v
p
⋅,j

|

|

|

2

=

J−1
∑

j=0

�
j

I−1
∑

i=0

√

(

�rp⋅,j

)2
+
(

�cp
⋅,j

)2

T A B L E  2   Definitions of perfusion parameters and related quantities

Perfusion parameter Description Units
Starting point, 
p0

Constraints,  
P

Relative 
weight, �′

Fp Plasma flowa mL/min/mL 1
[

10−3, 102
]

0.025

Tc Mean capillary transit time min 0.1 [Δt, 3] 0.283

Te Mean transit time of EESb min 2.5
[

Δt, 102
]

0.024

� =PS∕Fp =− ln (1−E) – 0.4 [10−4, 3] 0.103

� Bolus arrival time min 0 [−0.5, 1] 0.565

PS Permeability‐surface area product mL/min/mL

E Extraction fraction –

vp Plasma volume mL/mL

ve EESb volume mL/mL

kep EESb‐to‐plasma rate constant 1/min

Ktrans Volume transfer constant mL/min/mL
aValues take the reweighting by �

TRF
, �

AIF
 into account. 

bEES, Extravascular extracellular space. 
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where d, r are convex lower‐semicontinuous, not necessar-
ily differentiable functions. In our case, d and r represent the 
data and regularization terms, respectively. A is an arbitrary 
linear operator possibly in matrix form.

2.4.1  |  Proximal Newton method

The proximal Newton method26 is a variant of the Newton 
method28,29 for nondifferentiable functions applicable for 
functions in the form of Equation [7] if d is twice differenti-
able. Similarly to the Newton method, it exploits the Hessian 
of d, which improves the convergence of the algorithm. Since 
r is typically not differentiable, its gradient is replaced by the 
so‐called proximal operator, a useful tool proximal methods 
use to treat nondifferentiable functions.

The proximal operator of an arbitrary convex function 
f (x) can be defined43 as:

where y is a point at which the proximal operator is evaluated 
and � is called the scaling matrix. Note that in the major-
ity of the literature, � is the identity matrix. In the proximal 
Newton method, � is necessary to compensate for the scaling 
implied by the Hessian in the Newton step.

The proximal Newton method iteratively performs two 
steps until convergence:

1.	 Do a Newton step in d, where ∇d and H are the 
gradient and Hessian of d:

2.	 Evaluate the proximal operator of r (Ax) at the point yk 
scaled by H−1:

Since this subproblem 2) is solved in every iteration, it must 
be done efficiently. It resembles Equation [7], but d is now 
much simpler – a quadratic function. This case can be com-
puted again by a proximal method,such as the nested primal‐
dual algorithm27 described in Section 2.4.2. Let us note that 
in the case of a nonconvex d, as in our case, the proximal 
Newton method converges to the closest minimum,44,45 if the 
minimization steps are not too large.

2.4.2  |  Primal‐dual algorithm

Another proximal method for solving problems in the 
form of Equation [7] is the primal‐dual algorithm,27 
especially suitable for quadratic d. The algorithm is 
initialized by choosing constants influencing the conver-
gence: 𝜏, 𝜎 >0, 𝜃∈[0, 1], setting starting‐point variables: 
u0 = yk, v0 =Au0, x0 =u0, and proceeds by iterative updates 
until convergence:27

Here, r∗ is the convex conjugate25 of r and A∗ is the adjoint 
operator to A; see Equation [22] for details in the case of the 
total variation.

2.5  |  Estimation of perfusion parameters

The final goal is to estimate perfusion parameter maps, that 
is, to minimize Equation [3] using total variation regulariza-
tion in Equation [6]:

This problem is solved by the proximal Newton method 
(Section 2.4.1). Unfortunately, the computation of the 
Hessian matrices Hi of the data term f

(

pi,⋅

)

 for each curve i 
is computationally demanding and their inversions are unsta-
ble. For this reason we replace them by the Levenberg‐
Marquardt modification29: Hi =1∕𝜆k

i
I+2J⊤

i
𝜎−2

i
Ji, where �k

i
 

is related to the step length in the iteration k and Ji is the 
Jacobian matrix of c

(

nTs, p̂k
i,⋅

)

 of the size N×J. Then, the 

proximal Newton method has the form:

1.	 Do a Newton (Levenberg‐Marquardt) step [9] in terms 
of f

(

p̂k
i,⋅

)

 for each voxel:

where �k
i
 is estimated by the LM scheme according to Ref. 29.

2.	 Evaluate the scaled proximal operator [10] of the regulari-
zation function in [12]:

(7)arg min
x

d (x)+r (Ax)

(8)prox�
f
(y)= arg min

x

(

f (x)+(x−y)⊤ �−1 (x−y)
)

(9)yk =xk −H−1∇d
(

xk
)

(10)

xk+1 =proxH−1

r(A⋅)

(

yk
)

= arg min
x

(

r (Ax)+
1

2

(

x−yk
)⊤

H
(

x−yk
)

)

(11)

a) vn+1 =prox�
r∗
(vn+�Axn)

b) un+1 =prox�
d

(

un−�A∗vn+1
)

c) xn+1 =un+1+�
(

un+1−un
)

d) Repeat a)−c) until convergence

(12)p̂= arg min
p∈PI

I−1
∑

i=0

f
(

pi,⋅

)

+

J−1
∑

j=0

𝛾j
‖

‖

‖

∣Ap
⋅,j ∣

‖

‖

‖1

(13)
yk

i,⋅
= p̂k

i,⋅
−H

−1

i
∇f

(

p̂k
i,⋅

)

≅ p̂k
i,⋅
−𝜆k

i

(

I+𝜆k
i
2J

⊤

i
𝜎−2

i
Ji

)−1

∇f
(

p̂k
i,⋅

)

,∀i,
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The resulting functional [14] is minimized using the primal‐
dual algorithm [11]. After initialization of the starting point 
u0 =yk, v0

⋅,j
= �jAu0

⋅,j
, ∀j, x0 =u0 and setting the constants 

�, �; �≤
1

8�
 {valid for the operator of forward differences [6]}, 

the algorithm iterates through the following steps:

(a)	�Evaluate the proximal operator [11] of the convex 
conjugate of the regularization function in the form 
of r (x)=‖∣Ax ∣‖1. This is well known in image recon-
struction problems and the required proximal operator 
of its convex conjugate gets the form of a projection 
onto unit ball27:

that is, the vector field is in each point divided either by its 
magnitude or by unity.

(b)	�Evaluate the proximal operator of a quadratic function 
[11]:

The optimizer of this quadratic form was derived as:

where (⋅)i,⋅ stands for the row i of the result of the paren-
thesized operation and A∗ is the adjoint operator [22].

(c)	Update estimate [11]:

(d)	Repeat steps a), b), c) until convergence and then set:

3.	 Repeat main steps 1), 2) until convergence.

3  |   METHODS

3.1  |  Experimental data

For the comparisons with the ground truth, we have designed 
a numerical DCE‐MRI rat phantom. The phantom was based 
on a DCE‐MRI examination of a real rat with implanted 
glioblastoma46 (next paragraph). A high‐resolution image 
(1024×1024 pixels) of an axial slice of head including the 
tumor was based on manual segmentation of a real DCE‐MRI 
image sequence into 41 homogeneous regions (Figure 1). Each 
region was described by a set of perfusion parameters based on 
literature and on perfusion analysis results from Ref. 46. For 
each set of parameters, a concentration‐time curve was gener-
ated using the TH model and a predefined AIF47 in high tem-
poral resolution (sampling period equal to repetition time, TR). 
The curves were converted to signal‐intensity curves based on 
the acquisition model of the FLASH acquisition with no T∗

2
 

effect and assuming a constant contrast‐agent relaxivity r1 and 
spatially invariant native relaxation time T10 and proton density. 
The signal intensity curves were used to construct a high‐ 
spatial‐resolution image at each TR. These images, multiplied 
by coil sensitivities (estimated from real measurements), were 
then Fourier transformed to the k‐space and echoes extracted 
as k‐space lines corresponding to the acquisition scheme 
(next paragraph). Complex uncorrelated zero‐mean Gaussian 
noise was added to obtain SNR according to real conditions 
(Figure 1). In addition to the dynamic DCE‐MRI scans, multi‐
flip‐angle pre‐contrast scans were simulated. The simulated 
dynamic sequence was converted to the contrast‐agent concen-
tration using the pre‐contrast images according to.48

A real DCE‐MRI recording of a glioblastoma‐bearing rat 
was used as a testing preclinical dataset (detailed descrip-
tion in Ref. 46), acquired on a 7  T horizontal PharmaScan 
(Bruker Biospin, Germany) with a four‐channel rat head sur-
face coil using the FLASH acquisition: one 1mm slice, TR/
TE 8/2.1 ms, FA 17°, acquisition matrix 128×128, temporal 
resolution 0.768 s, total scan time ~13 min. The contrast agent 
(Omniscan – GE Healthcare, Norway) of 0.1 mmol/kg was 
injected intravenously after 25 s of recording. The pre‐contrast 
scans were acquired using the same parameters except for the 
FA (5°, 10°, 15°, 20°, 25°, 30°). These scans were used to 
convert the dynamic sequence to the contrast‐agent concentra-
tion images.48 The AIF was derived using multichannel blind 
deconvolution49 as stated in the original paper.46

A testing clinical dataset of a renal‐cell‐carcinoma‐ 
metastasis patient (details in Ref. 50) was acquired on a 
Magnetom Avanto 1.5 T MRI scanner (Siemens AG, Munich, 
Germany) using the T1‐weighted 2D saturation‐recovery 
prepared Turbo FLASH (nonselective SR pulse): TR/TE/TI 
400/1.09/200 ms, FA 16°, acquisition matrix 128×128, tempo-
ral resolution 1.2 s, three coronal slices, total scan time 10 min. 

(14)

p̂
k+1 = arg min

p∈PI

�

J−1
∑
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𝛾j
�

�

�
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2J⊤
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(16)
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Hi
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i,⋅
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)

⋅
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)−1
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)
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, ∀j,i,

(17)xn+1 =un+1+�
(

un+1−un
)

(18)p̂
k+1 =xn+1
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The contrast agent bolus of 7.5 ml (Gadovist – Bayer Schering 
Pharma, Berlin, Germany) was injected into antecubital vein. 
The pre‐contrast scans acquisition preceded with the same 
parameters except TI (500, 1000, 3000 ms, five frames per each) 
to perform conversion to contrast‐agent concentration.51 The 
AIF was estimated using multi‐channel blind deconvolution.50

3.2  |  Initial setup
To keep the regularization weights unchanged across meas-
urements and AIFs with different energies, the measured per-
fusion curves and the AIF were normalized by scalar 
constants �TRF, �AIF to obtain similar ratio of the data and 
regularization term values for any scenario. Additionally, we 
have separated relative weights � ′

j
 and the global weight Γ 

such that �j =Γ� �
j
. This extended the functional [12] to:

where �TRF, �AIF are estimated from the measured data and 
AIF using:

The estimates are finally computed as: p̂ = p̂
� except for 

p̂
⋅,1 =𝛼TRF𝛼

−1
AIF

p̂�
⋅,1

, since only the perfusion map Fp is influ-
enced by the energy of the inputs. It is worth noting that the 
number of samples N was included in [19] to eliminate a possi-
bly different number of time samples in the measured data S�.

The relative weights were estimated on the basis of the 
numerical phantom using the maximum likelihood approach,52 

that is, � ��
j
= I∕

‖

‖

‖

∣Ap�
⋅,j
∣
‖

‖

‖1
,∀j, transformed to � �

j
= � ��

j
∕
∑

� ��,∀j

. The minimization was run from only one starting point based 
on the authors’ experience and results in16 using the TH model. 
The relative weights, the starting point, as well as the constraints 
of the parameters are defined in Table 2. The estimates were 
projected onto the constraints P before any evaluation of the 
pharmacokinetic model throughout the iterative procedure.44 
This was done to ensure the respective physiological ranges and 
numerical stability. The stopping criterion in the main loop of 
the algorithm (proximal Levenberg‐Marquardt) was set experi-
mentally to 50 iterations and each subproblem (primal‐dual) 
was stopped after 200 iterations. The estimates of noise standard 
deviations (�i,∀i) were computed using the median of the 
absolute deviation estimator with the Daubechies wavelet.53 The 
source code of the algorithm is available at: https​://github.com/
Barto​lomej​ka/DCE-MRI_Regul​ariza​tion_MRM.

4  |   RESULTS

4.1  |  Strength of regularization

The goal of this numerical‐phantom experiment was to ana-
lyze the influence of the global regularization weight Γ on the 
perfusion parameter estimates. The proposed algorithm was 
run for 16 values of Γ spread logarithmically from 10−3 to 102. 
The results are shown in Figure 2 and Supporting Information 
Figures S1 and S2 as perfusion‐parameter maps and in Figure 3  
as the mean absolute error (MAE) for each perfusion param-
eter and as the mean, � (⋅), of the reduced chi‐squared statis-
tic, �2

red
, computed per voxel, which is related to the data‐term 

value in [12]. The metrics were defined as:

where p⋆
⋅,j

,∀j is the ground truth. The noise standard devia-
tion 𝜎⋆

i
,∀i was estimated using the ground truth. Additional 

metrics showing the bias and precision are plotted in 
Supporting Information Figure S3. The areas where the 
model is invalid or unstable, that is, bones (no signal), arter-
ies (no extravascular space), brain tissue (no contrast‐agent 
extravasation), and areas where SNR < 5 dB (areas far from 
surface coils), were excluded from the analysis.

When Γ increased, the MAE values (Figure 3) decreased 
until their minima, after which they started increasing, exhib-
iting an overregularization effect. The minima are achieved for 
Γ=0.22, except for Fp, vp, where the optimum is Γ=4.64. The 
value Γ=0.22 also corresponded to the best perfusion‐param-
eter maps visually (Figure 2). The optimal value Γ=0.22 was 
also consistent with the visual analysis of the bias and precision 
(Supporting Information Figure S3) for most perfusion param-
eters. Supporting Information Figure S3 shows that increasing 

(19)
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F I G U R E  1   Numerical rat phantom: 41 different color‐coded 
tissues (left) and the SNR induced to the phantom data by adding noise 
(right). The magenta rectangle shows the close‐up used in Figure 2. 
SNR, signal‐to‐noise ratio
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Γ could further improve precision but at the cost of increased 
bias. Mean absolute error shapes similar to ours were reported 
also in Ref. 22; however, in Ref. 22 the shape of the curve 
equivalent to our �

(

�2
red

)

 (Figure 3) was similar to the MAE 
curves. This was not observed here. A probable explanation 
is that our pharmacokinetic model and minimizer are more 
robust in terms of local optima. Interestingly, �

(

�2
red

)

≈1 for 
any Γ, meaning that the estimated concentration‐time curves 
fitted the data well even for high regularization (cf. Supporting 
Information Figure S1 showing �2

red
 per voxel).

4.2  |  Bias and precision of the estimator

The proposed method (with fixed Γ=0.22) was quanti-
tatively compared to the standard nonregularized method 
(Table 3 – tumor tissues, Supporting Information Table S1 –  

all tissues). The metrics used were the mean and the stand-
ard deviation of perfusion‐parameter estimates within each 
simulated tissue region, representing the bias and precision 
of the estimator, respectively. They were estimated from a 
single numerical rat phantom dataset (i.e., one realization of 
noise). The proposed method performed the best for large 
tissue areas with low SNR, as expected. The nonregularized 
version led to slightly less biased or more precise estimates 
only in some small tissue areas or regions with high SNR.

We additionally tested the performance of the nonregular-
ized and the proposed methods with the optimal setting (Section 
4.1) on the numerical phantom for 50 noise realizations. To 
measure the bias and the precision of the estimators, the mean 
and the standard deviation of the perfusion‐parameter estimates 
were computed for each voxel. Supporting Information Figure 
S4 (Mean) shows a distinct systematic difference between the 

F I G U R E  2   Effect of the regularization on perfusion parameters estimated from synthetic data in comparison with the ground truth. Only 
results for selected perfusion parameters and regularization weights are shown in a close‐up defined in Figure 1. The black areas (e.g. brain 
tissue surrounding the tumor and areas far from the used surface coils) had SNR < 0 dB (cf. Figure 1) and were excluded from the computation. 
The closest MAE distance to GT for most of the parameters is obtained for Γ=0.22 – column “Optimal” (cf. Figure 3). For Γ=2.2 – column 
“Overregularized,” the maps are too smooth, causing loss of details. MAE, mean absolute error; SNR, signal‐to‐noise ratio
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methods in the low‐SNR areas, that is, a clearly lower bias of 
the regularized estimation. In addition, the standard deviation 
of the proposed estimator is lower (i.e. higher precision), lead-
ing to an improved readability of perfusion maps (cf. Figure 2 
with Supporting Information Figure S4 – standard deviation, 
parameter Fp in tumor outer region).

To compare the two estimators quantitatively, we 
have again estimated their bias and precision per tissue 
(Supporting Information Table S2) by averaging their 
mean and standard deviation in Supporting Information 
Figure S4 within each simulated tissue region. In agreement 
with the evaluation based on a single noise realization, the 
proposed method enjoyed consistently better precision and 
in the majority of the cases also a lower bias (Supporting 
Information Table S2).

4.3  |  Computational demands
To assess the time requirements of the proposed method, 
additional data from the experiment in Section 4.1 were ana-
lyzed. They included the number of evaluations of the phar-
macokinetic model c

(

nTs, p′
i,⋅

)

 for each voxel i and the total 

duration of the minimization procedure measured on a 6‐core 
IntelR CoreTM i7‐8700K CPU @ 3.70 GHz, implementation 
in Matlab without parallelization. The same was analyzed for 
the standard method without regularization; that is, the 
denoising step [14] was excluded. Additionally, the standard 
nonregularized method was accelerated by including a stop-
ping criterion of a minimal change in its data term.

The proposed regularized perfusion analysis with Γ=0.22 
needed 36 min to finish in comparison with 20 min in the 
nonregularized case. The data consisted of 9916 curves, with 
1000 time points each. The evaluation of the LM step [13] 
took 80% and the denoising step [14] took 15% of the total 
time in the proposed algorithm.

As the calculation of the pharmacokinetic model [4] was the 
most time‐demanding operation, the distribution of the number 
of model evaluations in each pixel and their total count were 
analyzed (Figure 4). Theoretically, the number of model evalu-
ations in the regularized method is at least twice the number of 
iterations times the number of the concentration‐time curves, 
since recalculation of the gradients after each denoising step 
is needed. Contrarily, the nonregularized method can perform 
almost an arbitrary number of model evaluations, since the 
number of iterations is not fixed for particular curves. However, 
the regularized method does not need twice the nonregularized 
method model evaluations (black points in Figure 4). This 
means that the recomputations of the model and its derivatives 
inside one iteration to estimate the LM step length are reduced 
in the case of the regularized method. This stabilizing effect 
of the regularization is also visible in the distribution of the 
model evaluations in pixels (box plots in Figure 4). As the reg-
ularization grows, the numbers of model evaluations in each 
pixel reduce: that is, the pixels with problematic convergence 
are now converging better.

4.4  |  Real datasets

The results of the experiments on real preclinical and clinical 
data are shown in Figures 5 and 6, respectively; data were 
acquired under the approval of an Institutional Review and 
Ethics Boards. In both cases, the number of outlier perfu-
sion‐parameter estimates was clearly reduced and the spatial 
correspondence of the maps to the underlying anatomy was 
substantially improved.

5  |   DISCUSSION

The goal of this work was to improve the accuracy and preci-
sion of perfusion‐parameter estimates in DCE‐MRI. In the 
standard voxel‐by‐voxel approach, errors in the estimates 
are mainly caused by the presence of local minima of the 
curve‐fitting problem and appear mainly in low‐SNR condi-
tions starting at approximately 13 dB (cf. Figure 1 – SNR,  

F I G U R E  3   Effect of the regularization weight Γ on the distance 
of the parameter estimates from the ground truth (MAE) for the 
regularized parameters (top) and for the derived parameters (bottom –  
color curves). The effect of the regularization on the quality of fit 
represented by the mean of the reduced chi‐squared statistic �

(

�2

red

)

 is 
also shown (bottom – black line). MAE, mean absolute error
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Figure 2 – Nonregularized). However, it can differ on the basis 
of tissue type. Erroneous estimates reduce the readability of 
the perfusion maps and their usability in practice. Not only 
is the estimation error in perfusion‐parameter estimates ran-
dom but the estimates are also biased, as was demonstrated in 
Supporting Information Figure S4 (Mean, Nonregularized).

Using spatial regularization, we were able to stabilize 
the estimates. The introduction of additional prior informa-
tion led to a distinct improvement in the parameter estimates 
(Figure 2 or Supporting Information Figures S1 and S2 for 
Γ=0.22). The improvements were of two types: our method 
has improved the precision (i.e. reduced the variance of the 
estimates in homogeneous regions) and the readability of the 
parameter maps (e.g. Figure 2 – Tc map of the tumor), and it 
has reduced the bias of the estimates in areas with low SNR 
(see e.g. Figure 2 – bottom of the maps for Fp, E, Tc). These 
observations were supported by the quantitative evaluation 
of the bias and precision per tissue (Table 3 and Supporting 
Information Tables S1, S2).

In comparison with previous publications18-24 our work 
was based on the TH model as a natural successor of the 
previously used simpler models. Our study showed that the 
increased complexity of the TH model can still be handled 
using spatial prior. In addition, as opposed to the relaxed �1 
norm or �2 norm used by other groups, our prior is the total 
variation using exact �1 norm. This leads to a nondifferen-
tiable criterion functional of the estimator. As was derived 
in the paper, application of the state‐of‐the art minimization 
techniques, that is, proximal algorithms, solved this funda-
mental drawback efficiently.

In contrast to the previous spatially regularized DCE‐MRI 
approaches, our spatial‐regularization model [12] adjusts 
the strength of regularization automatically to the spatially 

varying noise level. Hence, voxels with high noise level are 
regularized more than those with low noise level. To utilize 
this property, the standard deviations of noise in each voxel 
were estimated using an independent estimator53 prior to the 
minimization. Alternatively, estimates from nonregularized 
curve fits similar to Ref. 22 can be used; this alternative 
method is more precise but time‐consuming. A more chal-
lenging approach would be estimation of noise standard 
deviations for each time instant or formulating the problem 
using an exact noise distribution model. We assume a zero‐
mean Gaussian noise with spatial‐variant standard deviation, 
which is not valid for low‐SNR areas.

The method presented is an experimental method pushing 
the DCE‐MRI limits utilizing the modern image processing 
techniques. The target application is preclinical DCE‐MRI 
data processing, where strongly inhomogeneous coil sensitiv-
ities are causing dramatic reduction of SNR in areas distant 
from the coils. Similarly, the clinical datasets may suffer from 
insufficient SNR, for instance, in the case of 3D imaging.  
The target application of our minimizer is defined by the 
model used in the core of the algorithm, that is, the pharma-
cokinetic model. Its replacement by another pharmacokinetic 
model or a completely different model with a similar struc-
ture can solve nonlinear minimization problems with regular-
ization in other applications, such as arterial spin labeling or 
diffusion tensor imaging.

Another aspect that deserves discussion is the regular-
ization function used and its relation to the properties of the 
numerical rat phantom. We have used the total variation, 
which is a simple regularization function that favors piece-
wise‐constant functions. In this way, we incorporated the 
assumption that tissues contain a small number of homoge-
neous regions with constant perfusion properties. To model 
real semihomogeneous tissues better, we could choose one of 
the more complex alternatives {by replacing the image gra-
dients of the total variation A in [6]}. These are for example 
the wavelet transform as in Ref. 24 favoring piecewise‐
polynomial functions or the total generalized variation54 
favoring piecewise linear functions. However, in our experi-
ence, the real‐life difference between them is not large. What 
is important is to apply any regularization with a preference 
for piecewise‐smooth functions, even a simple one.

Our numerical rat phantom contains several dozens of 
regions, where all the voxels have the same perfusion param-
eters. We are aware of the fact that this simplistic choice in 
a sense favors the regularization function used. We cannot 
solve this problem by using another regularization function, 
because all common functions favor piecewise constant func-
tions. On the other hand, we are not aware of any good model 
to describe the change in perfusion parameters within the 
same tissue. Any ad hoc noise introduced into the parameters 
could influence the results in an unpredictable way. These 
considerations lead us to the nonideal but plausible choice of 

F I G U R E  4   Distribution of the number of pharmacokinetic 
model evaluations in voxels shown in box plots together with the total 
number of function evaluations (black points) as a function of the 
regularization strength. Γ=0 stands for the standard nonregularized 
algorithm. The number of voxels was I =9916; the maximum number 
of iterations was 50
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the total variation regularization and the simple numerical rat 
phantom with constant regions.

In general, to set up the regularization strength is challeng-
ing even for the standard problem when regularizing a single 
image. In the DCE‐MRI, there are five perfusion‐parameter 
maps to regularize simultaneously: that is, five regularization 
weights have to be set. The weights are not independent, since 
each of them affects the others via the pharmacokinetic model. 
If, for example, one perfusion‐parameter map is forced to be 
too smooth (by setting its weight high), the estimates of the 
remaining perfusion parameters compensate for this effect to 
preserve a good fit in the data term. Thus their maps become 
uneven (data not shown but similar behavior is visible in 
Figure 2 or Supporting Information Figure S1, right column, 

parameters Fp vs. E, Tc). Therefore, the weights must not take 
only the values of the perfusion parameters into account but 
also their interconnection through the data‐term fitting.

We have approached the problem of setting the relative 
regularization weights by the maximum likelihood estima-
tion on a realistic numerical phantom. The optimal global 
weight Γ was chosen on the basis of knowledge of the 
ground truth and the estimated perfusion parameters. We 
have applied these weights to the real dataset and obtained a 
substantial improvement of the spatial consistency between 
the perfusion‐parameter maps and the anatomical images 
when compared to the nonregularized version. However, 
the accuracy improvement gained from the proposed spa-
tial regularization is difficult to quantify for the real data 

F I G U R E  5   Preclinical data (rat brain with glioblastoma). Comparison of the perfusion parameter maps estimated without and with spatial 
regularization (top, bottom row in a group, respectively). The dotted circle in the anatomical image (top right) indicates the tumor. The final SNR 
map is shown only once since it was similar for both methods. The perfusion parameters were calculated only for curves satisfying SNR > 0 dB. 
SNR, signal‐to‐noise ratio
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where no ground truth is available. Since the proposed 
algorithm utilizes data normalization and an estimator of 
the noise variance based on the input data, it should not 
be necessary to change the global regularization weight Γ 
nor the relative regularization weights � for new datasets. 
However, this beneficial property is difficult to test thor-
oughly and thus a slight modification of Γ can improve the 
estimates in new scenarios.

A related question is, which perfusion parameters 
should be spatially regularized. In this paper, the same 
parameters as the parameters of the pharmacokinetic model 
are regularized: Tc, Te, �, � (parameters independent of AIF 
and concentration‐time curves scaling) and Fp (dependent 

on scaling of the curves). This choice of the regularized 
parameters was also motivated by the fact that Fp, Tc, � are 
hard to estimate in comparison with the derived perfusion 
parameters such as vp, ve, Ktrans. Despite the fact that the 
derived parameters were not regularized, their estimates 
were stable and robust to overregularization contrary to 
the regularized parameters; see perfusion‐parameter maps 
of vp =FpTc and Ktrans =FpE in Supporting Information 
Figures S1 and S2.

Although we have justified the set of parameters for 
regularization, it is not clear whether this set is equal to 
an optimal set of parameters to parametrize the model in 
the minimization, which influences convergence. In the 

F I G U R E  6   Clinical data (abdomen area with renal cell carcinoma metastasis). Comparison of the perfusion parameter maps estimated 
without and with spatial regularization (top, bottom row in a group, respectively). The dotted circle in the anatomical image (top right) indicates 
the tumor; the magenta rectangle indicates the close‐up. The final SNR map is shown only once since it is similar for both methods. The perfusion 
parameters were calculated only for curves in a rectangular ROI satisfying SNR > 0 dB. ROI, region of interest; SNR, signal‐to‐noise ratio
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nonregularized case, the optimal parametrization was 
studied in Ref. 55 for the extended Tofts model, but in our 
work, the parameterization was not studied and the selec-
tion of the parameters was driven by the regularization and 
practical reasons.

6  |   CONCLUSION

Incorporation of spatial prior information in terms of total vari-
ation helps to improve the estimates of perfusion parameters. 
This was clearly shown on realistically simulated data. Perfusion 
maps estimated from preclinical and clinical data showed a sub-
stantially better consistency with anatomical images than in the 
case of the traditional estimation with no spatial prior.

Our implementation of the spatial prior incorporates an 
additional image denoising step applied to the perfusion maps 
after each iteration of the voxelwise Levenberg‐Marquardt 
algorithm. The time demands of the denoising step are negli-
gible in comparison to the evaluation of the pharmacokinetic 
model and its gradients keeping the presented algorithm trac-
table. However, the algorithm needs more model evaluations 
than the nonregularized algorithm, because of the additional 
model evaluations after each denoising step and a missing 
smart stopping criterion.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Effect of the global regularization weight � on 
perfusion parameters estimated from the numerical rat phan-
tom in comparison with the ground truth (GT). Estimates 
of the regularized perfusion parameters and the reduced �2 
metric are shown for selected regularization weights. The 
location of the used close‐up is defined in Figure 1
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FIGURE S2 Effect of the global regularization weight 
� on perfusion parameters estimated from the numeri-
cal rat phantom in comparison with the ground truth (GT). 
Estimates of the derived perfusion parameters and for selected 
regularization weights are shown in a close‐up defined in 
Figure 1
FIGURE S3 Simulated data, effect of the regularization 
weight � on the bias (estimated within a tissue) averaged 
using its absolute value over all tissues (left column) for the 
regularized parameters (top) and for the derived parameters 
(bottom). Similarly, the mean of tissue standard deviations is 
shown (measure of precision – right column). In the formu-
las, K, k relate to tissue indices and N, n relate to indices of 
voxels inside the tissues
FIGURE S4 Effect of the regularization (Proposed, � =0.22)  
on the mean and standard deviation of the perfusion‐parameter  
estimates from 50 noise realizations of the numerical rat 
phantom in comparison with the ground truth (GT)
TABLE S1 Quantitative comparison of the proposed TV and 
nonregularized VW estimations from a single noise realiza-
tion with the ground truth of the numerical rat phantom
TABLE S2 Statistical quantitative comparison of the pro-
posed TV and nonregularized VW estimations from 50 
noise realizations with the ground truth of the numerical rat 
phantom
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APPENDIX A

A1.  ADJOINT OPERATOR OF THE IMAGE 
GRADIENT

The adjoint operator A∗, required in the primal‐dual algo-
rithm, for the image gradient has the form of a negative dis-
crete divergence:27

where X1, X2 are respective components of the vector field 
with size equivalent to the result of the gradient operator in 
[6]. The divergence takes the position of the voxels in the 
image into account.42
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