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1 Uvod

Pii praci s fuzzy strukturami casto narazime na problém velkého rozsahu
zpracovavanych dat zpisobeny velikosti (poctem prvkil) pouzivané mnoZiny
pravdivostnich hodnot (stupnt pravdivosti). Tato prace popisuje zptsob fe-
seni tohoto problému, zalozeny na eliminaci malych rozdild mezi zkoumanymi
objekty.

Princip metody nastinime na modelovém piikladé. Predstavme si, Ze se
snazime zjistit potencialni oblibu péti riznych druhd zbozi. Prizkum trhu
pfinesl na otdzku ,Koupil/a byste si dané zbozi?“ kladenou potencidlnim
zékazniklim rtznych vékovych kategorii nasledujici odpovédi:

zbozi | < 30 let 30-60 let > 60 let
A 0.25 0.45 0.82
B 0.13 0.38 0.73
C 0.82 0.50 0.03
D 0.31 0.27 0.38
E 0.25 0.63 0.30

Data v tabulce interpretujeme takto (napf. pro fddek D a druhou vékovou
kategorii): Tvrzeni ,, Primérny zdkaznik ve vékové kategorii 30-60 let si chce
koupit zbozi D“ md pravdivostni hodnotu 0.27.

Je zfejmé, Ze tabulka nese pro manazera rozhodujiciho o zahdjeni vyroby
zbozi zbyteéné mnoho informaci. Pokud budeme data v tabulce déle zpra-
covavat napf. nékterou z metod data miningu (ptikladem takové metody je
fuzzy konceptudlni analyza, kterou se z velké ¢asti zabyvé tento text), na-
razime také na zasadni problém, ze mnozstvi informaci ziskanych z tabulky
prudce nartsta v zavislosti na po¢tu pouzitych pravdivostnich hodnot (tedy
pouzité logické presnosti).

Pted dalsi analyzou je tedy vhodné data upravit, a to i za cenu zptisobeni
malé chyby, ke které dojde jak v samotnych datech, tak v z nich ziskaném
vysledku.

V tomto textu se vénujeme dvéma zptisobtim takové upravy dat: aproxi-
maci a faktorizaci. Oba jsou zaloZeny na tom, Ze si uzivatel zvoli miru (tzv.
prdh), po kterou je ochoten tolerovat chybu ve vystupnich datech. V uvede-
ném pripadé by to mohlo naptiklad znamenat, ze zanedbame rozdily v datech,
které jsou mensi nez jedna pétina, tedy Ze zadame hodnotu prahu rovnu %.
Po zadani této hodnoty lze postupovat dvojim zptisobem: u metody aproxi-
mace vyhleddme shluky podobnjch dat a kazdy nahradime vhodnou stfedni
hodnotou, u metody faktorizace budeme pracovat se samotnymi shluky jako
s jednotlivymi (nedélitelnymi) hodnotami.



Metoda aproximace tedy pracuje s malou (pro uzivatele akceptovatelnou)
upravou vstupnich dat, metoda faktorizace spociva v abstrahovani od maljch
rozdiltt mezi jednotlivymi hodnotami (,simplification by abstraction®).

Idea zmensovani velikosti fuzzy struktur a dat jimi generovanych pomoci
aproximace a faktorizace je nova. Jejim hlavnim autorem je Radim Bélohla-
vek (prvni prace je [3], v [8] se pak hovoii o logické pfesnosti a jejim sni-
zovéani), vétsina praci s touto tematikou (vcetné praci tohoto textu) vznikla
v jeho vyzkumném tymu.

Vyzkum vedl ke studiu novych nebo malo zkoumanych teoretickych pro-
blémii: faktorizace struktur podle relace tolerance, stfedové body v rezidu-
ovanych svazech a systémech fuzzy mnozin a s nimi souvisejici problémy
aproximace, dale faktorizace reziduovanych svazi a systémt fuzzy mnozin.
Témito problémy se zabyva velkd ¢ast praci tohoto souboru [Prace 3, 7, 4,
5]. Mnohé z nich maji ovSem pfimy dopad na problémy praktického charak-
teru (zejména faktorizaci konceptudlnich svazi), nebo se jimi pfimo zabyvaji
[Préace 1].

Uvodni ¢ast toho textu shrnuje teoretické zaklady nutné pro pochopeni
ptilozenych praci (¢ast 2), definuje zékladni fuzzy struktury, na néz v téchto
pracich metodu aproximace a faktorizace aplikujeme (¢ast 3), a shrnuje vy-
sledky v pracich obsazené (¢ast 4). Snazime se postihovat souvislosti mezi jed-
notlivymi pracemi. Na zavér tivodu nastinujeme moznosti dalsiho vyzkumu
(¢ast b).

Tuto ivodni ¢ast se snazime podavat srozumitelnym a prehlednym zptso-
bem. V pripadé nejasnosti najde ¢tenar exaktni vyklad v prilozenych pracich.
Nabizime také tadu ilustrativnich prikladt, na které v prilozenych pracich
nezbyval prostor.

2 Fuzzy logika a fuzzy mnoziny

V této casti podavame zakladni poznatky o reziduovanych svazech, pouzi-
vanych jako struktury pravdivostnich hodnot fuzzy logiky, a o fuzzy mno-
zinach a relacich. Uvadime také nékolik prikladi. Podrobnosti 1ze nalézt
v [8, 27, 28, 30].

2.1 Reziduované svazy

Uplngm reziduovanym svazem rozumime algebru L = (L,\,V,®,—,0,1)
typu (2,2,2,2,0,0) takovou, ze

1. (L,A,V,0,1) je tplny svaz s nejmensim prvkem 0 a nejvétsim prvkem 1,
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2. ® je komutativni a asociativni operace spliujici a ® 1 =1 ® a = a pro
kazdé a € L (tedy (L, ®, 1) je komutativni monoid),

3. pro kazdé t¥i prvky a,b,c € L plati
a®b<c pravekdyz a<b—c (1)
(podminka adjunkce).

Prvky reziduovaného svazu se nazyvaji stupné pravdivosti. Operace ® a —
se nazyvaji soucin a reziduum.

Pokud neni feceno jinak, oznacujeme v celém tomto textu symbolem L
pevné zvoleny reziduovany svaz. Usporadani na mnoziné L indukované ope-
racemi A a V oznacujeme <.

Poznamka 1. Reziduované svazy byly zavedeny v praci [42]. Pouziti rezidu-
ovaného svazu jako struktury pravdivostnich hodnot ve fuzzy logice navrhl
J. A. Goguen [24, 25].

Operace A, V, ®, — reziduovaného svazu jsou interpretacemi logickych
spojek, resp. kvantifikdtori predikatové fuzzy logiky (po Fadé: velky kvan-
tifikdtor, maly kvantifikdtor, konjunkce, implikace). Podrobnosti lze najit
napiiklad v [8].

Pomoci zakladnich operaci reziduovanych svazt definujeme operace —
(negace), a < (bireziduum), které jsou interpretacemi logickych spojek fuzzy
negace a fuzzy ekvivalence, takto:

—a=a— 0, (2)
a—b=(a—0b)A((b— a). (3)

V literatufe se se strukturou uplného reziduovaného svazu setkdvame
nejcastéji v nasledujici podobé. Nosnd mnozina L je rovna jednotkovému
intervalu redlnych ¢isel [0, 1], operace ® je libovolna zleva spojitd t-norma,
tj. binarni operace, kterd je zleva spojitd v prvnim argumentu (jako redlna
funkce dvou proménnych), komutativni, asociativni, monotonni a ¢islo 1 je
jejim neutrdlnim prvkem [28], a pro reziduum — plati a — b = \/{c €
Lla®c <b}. Pak ([0, 1], min, max, ®, —, 0, 1) je uplnym reziduovanym sva-
zem.



Zakladni tii priklady adjungovanych dvojic operaci ® a — na intervalu
[0, 1] jsou nésledujici:

a®b = max(a+b-—1,0),

Lukasiewicz: 4
ukasiewicz 0 —b = min(l—a+b1), (4)
a®b = min(a,b),
Godel: 1 jestlize a < b, (5)
a—b = ..
b jinak,
a®b = a-b,
Goguen (soucin): { 1 jestlize a < b, (6)
a—b = b e
o jinak.

Kazda z uvedenych tii dvojic operaci definuje strukturu tuplného reziduo-
vaného svazu na intervalu [0, 1]. Vzniklé reziduované svazy se nazyvaji (po
fadé) standardni Lukasiewiczova, Gidelova, Goguenova (soucinovd) algebra.

Ttida uplnych reziduovanych svazi obsahuje také konecné struktury. Polo-
zime-li L = {ay = 0,a1,...,a, = 1} C [0,1], kde body ay < - - < ay,
jsou ekvidistantné rozlozeny (tedy @41 — a; = a1 — a; = % pro kazdé
i,j7 €{0,1, ..., n—1}) a definujeme-li operace ® a — jako ztZeni Lukasiewi-
czovych operaci (4) na mnozinu L, pak dostaneme uplny reziduovany svaz
L = (L, min, max, ®, —,0, 1), ktery se nazyva ekvidistantni Lukasiewicziv
Tetézec.

Na libovolné mnoziné L, na které je dano linedrni usporadani takové, ze
L s timto usporadanim tvori uplny svaz, lze zavést strukturu tplného rezi-
duovaného svazu s operacemi soucinu a rezidua definovanymi ptredpisem (5)
(tento predpis, narozdil od (4) a (6), vyuzivd pouze uspofadani na mnoziné
L a faktu, Ze se jednd o linearni usporadéani). V pfipadé, Ze mnozina L je
konec¢na, dostavame druhou skupinu pfiklad® konecného tplného reziduova-
ného svazu.

Priklad 1. Zvlastnim prikladem tuplného reziduovaného svazu je dvouprv-
kové Booleova algebra ({0,1}, A, V, ®, —,0, 1), ozna¢ovand symbolem 2, ktera
predstavuje strukturu pravdivostnich hodnot klasické logiky. Operace A, V,
®, — Booleovy algebry 2 jsou tedy interpretacemi odpovidajicich spojek
resp. kvantifikatori klasické predikatové logiky.

2.2 Fuzzy mnoziny

L-mnoZinou (také fuzzy mnoZinou) A v univerzu X rozumime zobrazeni A:
X — L. Pro x € X hodnotu A(z) € L interpretujeme jako ,stupen, ve
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kterém z je prvkem A.“ Mnozinu vSech L-mnozin v univerzu X oznacujeme
L¥ (tedy standardnim oznadenim pro mnoZinu vsech zobrazeni z X do L).

Pro L-mnoziny zavadime nésledujici oznaceni. Pro libovolné A € L pi-
Seme A = {A@/z | 2 € X}. Jestlize A(z) > 0 pouze pro = € {x1,...,2,},
piseme také A = {A@)/g; ... A@)/z 1 s pFipadnym zjednoduSenym z4pi-
sem z misto !/z. Pro L-mnoziny tvaru {%/z} tedy plati

Crabay = { § B =" @

Pro klasickou podmnozinu A C X piSeme

Alz) = 1 k?estl%ie reA,
0 jestlize z ¢ A,

¢imz ztotoziujeme mnozinu A s jistou L-mnozinou v X (charakteristickou
funkei). Diky tomuto ztotoznéni mtzeme klasické podmnoziny povazovat za
L-mnoziny.

P¥iklad 2. Mnozinu L} vSech L-mnozin v jednoprvkové mnoziné lze pii-
rozené ztotoznit s mnozinou L tak, ze L-mnozinu {%/z} ztotoznime s prvkem
a € L. V tomto ztotoznéni odpovida prunik (resp. sjednoceni) L-mnozin in-
fimu (resp. supremu), S reziduu (relace C na L{*} tedy odpovida relaci < na
L) a ~ bireziduu.

Klasické mnozinové operace a relace, jako jsou operace priiniku a sjedno-
ceni a relace ,byti podmnozinou“, lze zobecnit i na L-mnoziny. Ze se jedna
skutecné o zobecnéni, plyne z nasledujiciho:

e Polozime-li L = 2 (tedy ptejdeme-li ke klasické logice), piejdou vSechny
nové pojmy v klasické mnozinové pojmy,

e aplikace zobecnénych operaci na klasické mnoziny vede ke stejnému
vysledku jako aplikace piislusnych klasickych operaci.

Operace s L-mnozinami jsou definovany po komponentach. Prinik L-mnozin
A, B € L* je L-mnozina AN B v X takova, ze (AN B)(z) = A(z) A B(x)
pro kazdé = € X, jejich sjednoceni je L-mnozina A U B v X takova, ze
(AU B)(z) = A(z) V B(x) pro kazdé » € X.

Prinik a sjednoceni dvou L-mnozin lze zobecnit na libovolny pocet L-
mnozin, piipadné i na libovolnou L-mnozinu L-mnozin. Pro libovolnou L-
mnozinu U : LX — L (tedy U € LLX; U je L-mnozina L-mnozin v X),

9



pranik (U a sjednoceni | JU systému U jsou L-mnoziny v X takové, ze

U@ = A\ U@ — A), (8)

AcLX

U@ =\ U4) e A), (9)

AeLX

pro kazdé x € X.
Pro dvé L-mnoziny A, B € LX klademe

S(A,B)= A\ A(z) — B(x), (10)
A~ B= /\ A(x) < B(z). (11)

S(A, B) a A ~ B se nazyvaji (po fadé) stuperi, ve kterém A je podmnoZinou
B a stupern, ve kterém se A rovnd (pfipadné je podobné) B. Pomoci pravidel
sémantiky fuzzy logiky (odstavec 2.1) lze S(A, B) interpretovat jako stupen
pravdivosti formule ,Pro kazdé x € X plati: je-li © prvkem A, pak je x
prvkem B.“ Podobné, A =~ B je stupen pravdivosti formule , Pro kazdé z € X
plati: x je prvkem A pravé kdyz z je prvkem B.“ = se nazyva Leibnizova
podobnost.
Z definice operace birezidua (3) ihned plyne nasledujici vztah:

A~ B=S(A,B)AS(B,A). (12)

Z podminky adjunkce (1) lze snadno odvodit, ze S(A, B) = 1 pravé kdyz
A(z) < B(x) pro kazdé z € X (A je zcela obsazeno v B). Tuto skute¢nost

zapisujeme takto:

A C B,
coz v pripadé klasickych podmnozin vede pfesné na klasicky pojem podmno-
zZiny.

Na L-mnozinach lze také zavést operace, které nemaji obdobu v klasické
teorii mnozin, v niz se redukuji na trivialni operace. Zakladnim prikladem
je tzv. posun a nasobek (v literatufe se také setkdme s pojmem kotenzor a
tenzor). Pro libovolny prvek a € L rozumime a-posunem L-mnoZiny A € LX
L-mnozinu @ — A € LY, definovanou predpisem

(a — A)(z) =a— A(z), (13)
a a-ndsobkem A rozumime L-mnozinu a ® A € L~ definovanou piedpisem

(a® A)(z) =a® A(x), (14)
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pro kazdé x € X.

Jednoduchym zptisobem prevedeni L-mnoziny na klasickou mnozinu je
pouziti tzv. fezi. To spociva ve volbé stupné pravdivosti a € L (nazyvaného
také prahem), ktery predstavuje hranici, po kterou jsme ochotni pravdivostni
stupné akceptovat jako ,dostatecné pravdivé“. Pro libovolnou L-mnozinu
A € L pak polozime

“A={re€X|a<AQ)) (15)

?A je klasickd podmnozina mnoziny X, ktera se nazyva a-rezem mnoziny A.
V pracich tohoto souboru je zvoleny prah oznacovan také pismenem e
nebo e.

2.3 Fuzzy relace, fuzzy ekvivalence

n-drni L-relact mezi mnoZinami X,, Xs, ..., X, rozumime libovolné zobra-
zeni R: X1 x Xox---xX,, = L. L-relace R je tedy L-mnozina v kartézském
souc¢inu X; x Xy x --+ x X,,, coz odpovida definici relace z klasické teorie
mnozin. Je-li X; = Xy, = --- = X,, = X, hovofime o n-drni L-relaci na
mnoziné X.

Proz; € Xy, 25 € Xy, ..., z, € X, interpretujeme hodnotu R(z1, xs, ...,
x,) jako stupen, v némz jsou prvky xi, s, ..., x, v relaci R.

V této praci se zabyvame predevsim bindrnim: relacems, tedy pripadem
n = 2. V tomto pfipadé pouzivime pro hodnotu R(zi,xzs) také oznaceni
x1R xo. Pojem undrni relace na mnoziné X (pro n = 1) splyvd s pojmem
L-mnoziny v mnoziné X.

Zakladni pojmy znamé z klasickych relaci lze zobecnit i na L-relace. Bi-
narni L-relace R na mnoziné X se nazyva

e reflexivni, jestlize R(x,z) = 1,
o symetrickd, jestlize R(z,y) = R(y, x),
o tranzitivni, jestlize R(x,y) ® R(y,z) < R(x, 2)

pro kazdé x,y, z € X. Binarni L-relace R se nazyva L-ekvivalence, je-li refle-
xivni, symetricka a tranzitivni. Pokud navic pro kazdé x,y € X z R(x,y) =1
plyne z = y, nazyva se R L-rovnosti na X.

Leibnizova podobnost L-mnoZin (11), je pfikladem L-rovnosti na mnoziné
LX.

Rekneme, 7ze n-arni L-relace R na X je kompatibilni s L-ekvivalenci ~ na
X, jestlize pro kazdé x1,...,x,,y1,...,y, € X plati

(1Y) ® @ (xy R yp) @ R(x1, ..., 20) < R(Y1y- -y Yn)- (16)
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Jelikoz n-arni L-relace jsou specialni L-mnoziny, mtizeme k nim také tvo-
it Tfezy. a-fezem “R L-relace R mezi mnozinami X1, ..., X, je pak klasicka
n-arni relace mezi témito mnozinami.

2.4 Tolerance

Je-li ~ L-ekvivalence na mnoziné X a a € L zvoleny prah, je zjevné a-fez
“~ této L-ekvivalence (klasickd) reflexivni a symetricka relace. Plati totiz

r~uz, prave kdyza < (r=z)=1a
x~y, pravé kdyz a < (x = y) = (y = x), pravé kdyz y =~ .

Je ale zfejmé, Ze a-Tez L-ekvivalence nemusi byt tranzitivni relace.
Ve specialnim pfipadé a = 1 je 1-fez L-ekvivalence vzdy (klasickou) ekvi-
valenci. Je-li &~ navic L-rovnost, je jeji 1-fez '~ shodny s klasickou rovnosti

Binarni (klasickd) relace, kterd je reflexivni a symetrickd, se nazyva tole-
rance [39, 35].

Poznamka 2. Rozdil mezi relaci tolerance a ekvivalence (ktera je proti tole-
ranci navic tranzitivni) lze charakterizovat tak, ze zatimco ekvivalenci pou-
zivame, kdyz sledujeme shodnost vybranych vlastnosti zkoumanyjch objekti,
u tolerance nam jde pouze o jejich podobnost.

Méjme toleranci ~ na mnoziné X a prvek x € X. Tridou tolerance ~
danou prvkem x rozumime mnozinu [z]. = {y € X | y ~ z}. Neprazdna
mnozina B C X se nazyva blok tolerance ~, jestlize pro libovolné dva prvky
Y1,y2 € B plati y1 ~ ya.

Je ziejmé, ze kazdy blok tolerance ~ je podmnozinou ttidy libovolného
svého prvku. TFida tolerance ovSem nemusi byt jejim blokem (jelikoZ relace ~
nemusi byt tranzitivni, neplati obecné pro libovolné dva prvky y1,y2 € [z]~
vztah y1 ~ ys).

Blok B tolerance ~ na mnoziné X se nazyva maximdlni blok, jestlize pro
kazdy jiny blok B’z B C B’ plyne B = B’. Mnozina vSech maximalnich bloku
tolerance ~ na mnoziné X se nazyva faktormnozina (factor set) mnoziny X
podle tolerance ~ a oznacuje se X /~. Je zfejmé, ze faktormnozina X/~ tvori
pokryti mnoziny X (tj. |J X/~ = X).

Priklad 3. Jednoduchym ptikladem relace tolerance je relace ~ na mnoziné
R redlnych cisel, dana vztahem

r~vy, pravékdyz 0.1 <|z —y|.
Maximéalnimi bloky této tolerance jsou uzaviené intervaly délky 0.1, tiida

libovolného ¢isla = € R je rovna intervalu [x — 0.1,z + 0.1].
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Poznamka 3. Cést praci tohoto souboru se zabyva problémem faktorizace
mnoziny podle tolerance, vzniklé jako a-fez néjaké L-rovnosti. Problematika
faktorizace podle tolerance je v matematice neobvykla. Podle dostupnych
informaci je zpracovana pouze pro (Gplné) svazy [21, 23].

2.5 Priklady

Piiklad 4. Necht L = [0,1] a uspofadani na L je pfirozené usporadéani
realnych ¢isel (operace soudinu a rezidua zatim presnéji nespecifikujeme).
Daéle necht X je mnozina vSech barev. Na mnoziné X lze definovat nékolik
L-mnozin, které maji prirozeny vyznam. Polozme naptiklad pro libovolnou
barvu x € X hodnotu Ag(x) rovnu hodnoté jeji ¢ervené slozky. Agr(x) lze
interpretovat jako stuperi, v némz barva x mé ¢ervenou slozku (¢ervena slozka
je obsazena v barvé z) a Ag jako L-mnozinu vSech barev s ¢ervenou slozkou.

Zkusme ponékud subjektivnéjsi priklad a oznac¢me pismenem () L-mnozi-
nu v X barev, které se libi néjaké testované osobé. L-mnozinu () muzeme
ziskat napriklad dotaznikovym Setfenim, kdy testovand osoba bude poza-
dana, aby u kazdé barvy urcila, nakolik souhlasi s tvrzenim ,tato barva se
mi libi“.

Priklad 5. Pokra¢ujme v ptredchozim piikladé a uvazme binarni L-relaci
~ na mnoziné X, ktera charakterizuje podobnost barev, tedy takovou, ze
hodnotu x = y lze interpretovat jako stupen pravdivosti formule ,Barvy x a
y jsou podobné.“

L-relaci =~ lze na mnoziné X zavést mnoha zptisoby, ziejmé ale bude
v kazdém piipadé reflexivni a symetrickd. Lze ji také pfirozenym (tj. praxi
dobfe odpovidajicim) zptisobem zavést tak, aby byla i tranzitivni.

Uvazme kromé L-mnoziny Agr z ptredchoziho piikladu jesté analogické
L-mnoziny Ag a Ap barev se zelenou, resp. modrou slozkou. Jednoduchym
a pomérné prirozenym zpusobem, jak definovat podobnost dvou barev, je
vychazet z podobnosti jejich jednotlivych slozek a polozit

ce{R,G,B}

(,,Pro kazdou barevnou slozku plati, Ze je obsazena v barvé x pravé kdyz je
obsazena i v barvé y“).

Nyni 1ze snadno pomoci zakladnich vlastnosti reziduovanych svazi uka-
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zat, ze L-relace =~ je tranzitivni:

Ty @Y=z =

= A A@<Ay|eo| A A <Al | <

ce{R,G,B} ce{R,G,B}

A (Ade) = Ay) ® (Aly) = Acl2)) <

ce{R,G,B}

< /\ Az) & Az) =

ce{R,G,B}

IN

=T~z
L-relace =~ je tedy L-ekvivalence na mnoziné X.

Priklad 6. Jelikoz kazda barva je jednoznacné urcena svymi tfemi kom-
ponentami, je L-relace =~ z pfedchoziho prikladu dokonce L-rovnosti na X.
Pokud totiz x ~ y = 1, je podle definice této L-relace A.(z) <« A.(y) =1
pro kazdé ¢ € {R,G, B}, coz znamend, Ze pro kazdé ¢ € {R,G, B} plati
Ac(z) = Ac(y).

V nasledujicich prikladech obratime pozornost k piikladu s tycemi, uve-
deném v pracich [Prace 3, 6]. Uvedeme také tivahy, které mohou v praxi
prispét k rozhodnuti o volbé vhodné strutury pravdivostnich hodnot.

Priklad 7. Mé&me sadu rtizné dlouhych Zeleznych tyéi. Ukolem je stanovit
pro kazdé dvé tyce ze sady jejich podobnost, tj. ¢islo z intervalu [0, 1] takové,
ze hodnota 1 znamena ,,tyce jsou uplné stejné“ a hodnota 0 ,tyce se zcela lisi.”
Jedné se o tenké tyce, jejich podobnost budeme stanovovat ¢isté porovnanim
délek.

Predpokladejme nejprve, ze mame podobnost dvou tyc¢i stanovit na za-
kladé fotografie, ktera zobrazuje pouze dvé porovnavané tyce. Nezname pti-
tom méFitko fotografie (tedy nezndme absolutni délku zobrazenych ty¢i),
stejné tak nevime, jak dlouhd je nejdelsi tyc ze sady. Nejjednodussi moznosti
v tomto ptipadé je porovnavat tyce pomérem jejich délek. Stupen podobnosti
p1 & po ty¢i pr a py o délkach I(p1) a l(p2) tedy stanovime vzorcem

~ po — min ( [P1) 1(p2)
PP = <Z<p2>’Z<p1>>' 18)

Pomér délek tyci lze zjistit i z fotografie, jejiz métitko nezname. Je-li totiz
toto méfitko rovno ¢islu ¢ > 0 (koeficient zvétSeni), plati

c-l(p1) C‘l(pz))
c- Z(sz c-l(p1) '

(19)

D1 %mzmin<
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Uvazme interval [0, 1] s Goguenovou (sou¢inovou) strukturou L. Snadno lze
ukazat, ze v tomto pripadé je L-relace ~ L-ekvivalenci na mnoziné vsech
tyci. Jelikoz podminky reflexivity a symetrie jsou zfejmé (a jsou splnény bez
ohledu na volbu struktury reziduovaného svazu na intervalu [0, 1]), vénujme
se pouze podmince tranzitivity. Pro libovolné tii tyce pi, p2, p3 méame

~ ~ . (Up) Up2) . (Up2) U(ps)
(P 2] (pa 2 ) = min (@@) . (@@) =
< [(p1) ) l(p2) _ l(p1)

~ Up2) Ups) [(ps)

a podobné
l(p2) l(ps) l(p3)
~ ® ~ S . = ,
e~ p2) © 2% 23) < 505 1) = 1)
coz vede k

e [
(p1 = p2) ® (p2 =~ p3) < min ( (p1)7 (p3)) =p1 = Pp3

a dokazuje tranzitivitu L-relace ~.

Priklad 8. Predpokladejme, Ze je zndma maximélni mozna délka tyce a
Ze je normovand na hodnotu 1. Dale predpokladejme, Ze u fotografie tyci
zname meéritko a jsme z ni tedy schopni zjistit absolutni délku zobrazovanych
ty¢i. V takovém piipadé méame jinou (zfejmé pFirozenéjsi) moznost stanoveni
stupné podobnosti tyci, zaloZenou na rozdilu jejich délek:

pr~py=1—|l(p1) — l(p2)]- (20)

UkaZzeme, ze zvolime-li jako mnozinu pravdivostnich hodnot L interval [0, 1]
s Lukasiewiczovou strukturou, bude L-relace ~ L-ekvivalenci na mnozZiné
vsech tyci.

Podobné jako v predchozim prikladé je podminka reflexivity a symetrie
L-relace &~ splnéna trivialné. Ovéfme podminku tranzitivity. Pro libovolné
tTi tyCe p1, p2, p3 mame

(p1 = p2) ® (p2 = p3) = max{(p1 = pa2) + (p2 = p3) — 1,0},

kde

(1= p2) + (p2=p3) —1=1—[l(p1) — Up2)| = [l(p2) — U(p3)| <
< 1—|l(p1) — U(ps)| = p1 =~ ps.

Tim je ovéteno, ze L-relace =~ je L-ekvivalence na mnoziné vsech tyci.
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3 Zakladni struktury

V této casti uvadime definice zdkladnich fuzzy struktur, které pouzivame
v prilozenych pracich: L-uzavérovych operatori, L-automatt a L-konceptual-
nich svazt. Hlavni diraz klademe na L-konceptualni svazy, pro které uvadime
i fadu praktickych prikladi. Tyto priklady ukazuji, Ze prace tohoto souboru
jsou soucasti aktualniho vyzkumu, ktery piinasi zajimavé aplikace.

3.1 L-uzavérové operatory

Uvazme pro libovolnou mnozinu X zobrazeni C: L* — L¥ takové, Ze

AcC oA, (21)
S(A1, Az) < S(C(Ar),C(Az)), (22)
C(A) = C(C(4)), (23)

pro kazdé A, Ay, Ay € LX. Zobrazeni C se nazyva L-uzdvérovy operdtor (fuzzy
uzdvérovy operdtor) na mnoziné X [4, 8, 38|.
Pevngm bodem L-uzéavérového operatoru C' nazyvame takovou L-mnozinu
Ac LX, ze
C(A) = A. (24)

Mnozinu vSech pevnych bodi L-uzévérového operatoru C' oznacujeme sym-
bolem fix(C'). Tato mnoZina spoleéné s mnozinovou inkluzi C tvoii tplny
svaz.

Z (22) a (12) také plyne nasledujici vztah pro podobnost (11) L-mnozin
v X:

Poznamka 4. Pojem L-uzavérového operatoru je zobecnénim pojmu uzé-
vérového operatoru, znamého z riznych matematickych disciplin: pro L =
{0,1} tyto dva pojmy splyvaji.

Priklad 9. Neékolik priklada klasickych uzavérovych operatori: uzavér mno-
ziny v topologickych (a tedy i metrickych) prostorech, linedrni obal pod-
mnoziny vektorového prostoru, afinni obal podmnoziny afinniho prostoru.
Pevnymi body téchto uzavérovych operatort jsou vzdy mnoziny, které hraji
v prislusné teorii klicovou tlohu: uzaviené mnoziny, vektorové, resp. afinni
podprostory.

S dalsim prikladem klasického uzavérového operatoru, dilezitym v kon-
textu této prace, se setkdvame v tzv. formalni konceptualni analyze. Pod-
statna cast této prace se tyka zobecnéni této discipliny, formalni konceptudlni
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analyzy s fuzzy hodnotami atributi, kterou uvadime v odstavci 3.3 a v niz
L-uzéavérové operatory hraji dulezitou tulohu.

Nésledujici ptiklady piebirame piedevsim z [Prace 7] a piipojujeme né-
kolik poznamek:

Priklad 10. V Pfikladu 2 jsme uvedli, Ze reziduovany svaz L lze ztotoznit
se systémem fuzzy mnozin v libovolném jednoprvkovém univerzu X = {z}
tak, Zze prvek a € L ztotoznime s L-mnozinou {*/x}. Identické zobrazeni
C: L — L, tedy C(a) = a je zjevné L-uzdvérovy operdtor na X a plati
fix(C) = L.

Priklad 11. Pro libovolnou mnozinu X a prvek a € L je zobrazeni C, :
LX — LX dané predpisem

Co(A)=a—a® A (26)

(na pravé strané je pouzit posun a nasobek L-mnoziny (13), (14)), L-uzévéro-
vym operatorem na X.

Piiklad 12. Pro L-ekvivalenci ~ na mnoziné X poloZme

[Ca(A)](z) = \/ Aly) © (x = y). (27)

yeX

C~ je L-uzavérovy operator, dobre znamy v teorii fuzzy mnozin. Jeho axi-
omatické vlastnosti byly studovany v [9]. Mnozina pevnych bodi tohoto L-
uzaveérového operatoru obsahuje pravé L-mnoziny, které jsou tzv. extensio-
nalni vzhledem k =, tj. spliujici A(z) ® (z =~ y) < A(y) (,,Je-li x prvkem A
a z je podobné y, pak je y prvkem A“).

3.2 L-automaty

Z praci tohoto souboru se L-automaty zabyva pouze [Prace 1]. Proto zde
uvedeme pouze struc¢nou definici a pripojime nékolik poznamek.

Podle [8] nazyvame L-automatem (fuzzy automatem) M nad konecnou
abecedou ¥ ¢tverici (Q, %, Qr, Qr,0), kde @ je konecnd mnozina stavi,
abeceda, (J; C () L-mnozina pocatecnich stavi, Qr C () L-mnozina konco-
vych stavii a 0 ternarni L-relace, §: () x ¥ x () — L, nazyvana prechodova
relace.

Pro stavy ¢, ¢’ € @ a symbol s € ¥ interpretujeme hodnotu d(q, s, ¢') jako
stupen pravdivosti tvrzeni ,L-automat M miize pfejit ze stavu ¢ do stavu
¢, mé-li na vstupu symbol s*.
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Pro vstupni slovo @ = s ... s, € ¥* klademe

5(Q7a7q/) - \/ 5(%;317(]1) AR /\5((]71—178717(]71)7
qo,...,anQ/
q0=4,9n=4q
(LM (@) =\ Qilg) Ad(g.oq) AQr(q).
4,9'€Q

Hodnota d(q, o, ¢') je interpretovana jako stuper, v némz muze L-automat
M pfejit ze stavu ¢ do stavu ¢’, ma-li na vstupu slovo . L-mnozina £(M)
se nazyva L-jazyk prijimany (rozpozndvany) L-automatem M.

Poznamka 5. Pojem L-automatu je pfimocarym a pfirozenym zobecné-
nim klasického pojmu nedeterministického koneéného automatu (v néjz L-
automat ptejde, polozime-li L = {0, 1}, tedy pfejdeme-li ke klasické logice).

L-jazyky (a tedy i L-automaty) maji své opodstatnéni v tom, ze je v né-
kterych situacich prirozené uvazovat jazyky, u nichz stupen piislusnosti slova
nemusi byt ¢isté jen 0 nebo 1. Fuzzy automaty nasly aplikace v riznych ob-
lastech (rizné druhy simulaci, rozhodovani, rozpoznavéani vzoru, zpracovani
signalu, ziskavani informaci, viz napt. [34]).

Podobné jako u klasickych automati i L-automaty maji zjednodusenou
deterministickou verzi [7]: L-automat M se nazyva deterministicky, existuje-
li stav gy € @ (tzv. pocddtecni stav) takovy, Ze

| 1 jestlize ¢ = qo,
a pro kazdy stavg; € () a symbol s € ¥ existuje stav ¢u € Q) takovy, ze
| 1 jestlize ¢ = g,
o1, ,q) _{ 0 jinak. (29)

Pro ¢; a go z pfedchoziho vzorce piSeme g2 = 6(q1,s) (vzhledem k jinému
poc¢tu argumentt nehrozi zdména s L-relaci ¢). Funkce § : Q@ x ¥ — @
se nazyva prechodovd funkce. Deterministicky L-automat M s pocatecnim
stavem ¢o a prechodovou funkei § zapisujeme jako ¢tverici (@, X, qo, Qr, 0).

3.3 Formalni konceptualni analyza dat
s fuzzy hodnotami atributa

Formélni konceptualni analyze dat s fuzzy hodnotami atributi (struéné fuzzy
formalni konceptualni analyze) je vénovana vétSina praci tohoto souboru.
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V této casti definujeme souhrnné zakladni pojmy a uvedeme zakladni vy-
sledky fuzzy formélni konceptuélni analyzy, které jsou v jednotlivych pracich

Klasicka formalni konceptualni analyza (FCA, prvni prace [43], dale [23]),
je jednou z pouzivanych metod dolovani dat (data mining). Formalni koncep-
tualni analyza dat s fuzzy hodnotami atributii, zavedend v [17] (na$ pfistup
vychazi z [36] a [2], standardni reference je [8]), je pfirozenym zobecnénim
této teorie do prostiedi fuzzy logiky a fuzzy mnozin.

V tomto tvodu se nevénujeme zvlast klasické FCA, ktera je specidlnim
pripadem pro L = 2.

Zékladni strukturou, se kterou fuzzy FCA pracuje, je tzv. formdlni L-
kontext. Ten je definovan jako trojice (X,Y,I) tvofenid mnozinou X (mno-
Zina objektd), mnoZzinou Y (mnoZina atributi) a L-relaci [: X x Y — L
mezi mnozinami X a Y. Formalni L-kontext (XY, I) reprezentuje datovou
tabulku, ktera kazdému objektu x € X a atributu y € Y prifazuje hodnotu
I(x,y) € L. Tuto hodnotu interpretujeme jako stupen, v némz ma objekt x
atribut y.

Poznamka 6. V klasické FCA tedy mame pro objekt = a atribut y pouze
dvé moznosti: objekt x atribut y bud ma nebo nema4.

Pro libovolnou L-mnozinu objekttt A € LX definujeme L-mnozinu atri-
but@t A" € LY piedpisem

Al (y /\ A(z) — I(x,y). (30)

zeX

Podobné pro L-mnozinu B € LY atributti definujeme L-mnoZinu B objektt
predpisem
BY(z) = N B(y) — I(z,y). (31)
yeyY
V pripadé, ze nejsou pochybnosti o volbé L-relace I, pouzivame misto sym-
bolii 7, }1 jednoduse T, !.

Piedpisy (30) a (31) jsou definovana zobrazeni ': X — LY a t: LV —
LX. Podle pravidel sémantiky fuzzy logiky je hodnota A'(y) rovna pravdi-
vostni hodnoté tvrzeni ,,Pro kazdy objekt = plati: jestlize x je prvkem mno-
ziny A, pak m4 atribut y“. Hodnota B'(z) je pak rovna pravdivostni hodnoté
tvrzeni ,Pro kazdy atribut y plati: jestlize y je prvkem mnoziny B, pak je
atributem objektu x*“. V p¥ipadé klasické logiky (L = 2) je tedy mnoZina A'
rovna (klasické) mnoziné vsech atributi sdilenych vSemi objekty z mnoZiny
A a, podobné, mnozina B! je rovna mnoziné vsech objektt majicich vSechny
atributy z B.

19



Zobrazeni | a ! splituji nasledujici podminky:

S(Ar, Az) < (A3, AY), S(By, B) < S(By, By), (32)
AC A B C B', (33)

pro kazdé Al,AQ,A € LX, B, Bl,BQ € LY.

Poznamka 7. Podminky (32) a (32) znamenaji, Ze dvojice (',') tvoii tzv.
L-Galoisovu konexi mezi mnozinami X, Y (viz [8]).

Pokud v podmince (32) pfedpokladame, Ze leva strana nerovnosti je rovna
1, dostaneme nésledujici specialni pripad:

Jestlize A; C A,, pak A; C AI. Jestlize By C By, pak B% C B%. (34)

Tento vztah méa srozumitelny vyznam: Zvétsime-li mnozinu objektii, zmensi
se mnozina atributtl témto objektim spolecnych. Zvétsime-li mnozinu atri-
butt, zmensi se mnozina objektl tyto atributy sdilejicich.

Z podminek (32) a (33) také snadno plyne

S(A1, As) < S(ALY, AL, S(B1,By) < S(By', Bs'),  (35)
AT — AT, BTl — Bl7 (36)

coz spole¢né s (33) znamend, e zobrazeni ' a T jsou uzévérové operatory.

Poznamka 8. Tato skutec¢nost je dileZitd pro studium vlastnosti nize defi-
novanych formalnich L-konceptt a L-konceptualnich svazi. Diky ni lze také
obecné vysledky z [Préace 6, 7|, které se tykaji L-uzévérovych operatort, apli-
kovat na formalni L-konceptualni svazy.

Dvojice (A, B) € L* x LY se nazyva formdini L-koncept, jestlize plati
Al = B a B! = A. L-mnozina A ve formalnim konceptu (4, B) se nazyva
extent, L-mnozina B intent.

Poznamka 9. Definice formalniho konceptu vystihuje dilezity aspekt lid-
ského mysleni, ktery byl zaznamenan v Port-Royalské logice [1] a ktery souvisi
s tim, jak mysleni pracuje s pojmy. Kazdy pojem totiz znamena jednak sou-
hrn predméti, které popisuje (objekty), a jednak souhrn vlastnosti, kterymi
je popisuje (atributy).

Ozna¢me Ext(X,Y,T), resp. Int(X,Y,I) mnoZinu vSech extentil, resp.
intentti formalniho kontextu (X, Y, I).
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Poznamka 10. Z definice formdalniho konceptu plyne, ze Ext(X,Y,I) je
mnozinou vsech pevnych bodil uzévérového operdtoru ' a Int(X,Y,I) je
mnozinou vsech pevnych bod# uzavérového operatoru 1.

Z (36) také plyne, ze pro libovolnou L-mnozinu A € LX plati, ze A' je
intent s extentem A’ a pro libovolné B € LY plati, ze B! je extent s intentem
Bl

Formalni konceptualni analyza se zabyva vyhledavanim a popisem vsech
formalnich konceptit daného formélniho kontextu.

Ozna¢me B(X,Y,I) mnozinu vSech formalnich koncepti formalniho L-
kontextu (X,Y, I). Plati tedy

B(X,Y,I)={(A,B) e LX x LY | A = B,B' = A}. (37)

Na mnoziné B(X,Y, I) zavadime ¢astecné uspofadani pomoci mnoZino-
vého usporadani extentt. Klademe

<A1, Bl> S <A2, B2> pI‘éVé kdyi Al Q A2 (38)

(z (34) plyne, Ze tato podminka je ekvivalentni podmince By C By). Z této
definice také plyne, Ze uspofadand mnozina B(X,Y, ) je izomorfni mnoziné
Ext(X,Y, ) s uspofddanim danym inkluzi L-mnozin C a dudlné izomorfni
mnoziné Int(X, Y, I) s usporadanim rovnéz danym inkluzi C.

Prvni ¢ast tzv. Hlavni véty L-konceptualnich svazi (v klasickém pti-
padé dokazéna v [43], pro formélni L-koncepty v [36, 5, 6]) fikd, Ze mno-
zina B(X,Y,I) s uspofadanim < je uplny svaz. Tento tplny svaz se nazyva
L-konceptudlni svaz indukovany formdlnim kontextem (X,Y,I).

Poznamka 11. Podminku (A;, By) < (A, By) lze chapat tak, ze formalni
koncept (As, By) je zobecnénim formalniho konceptu (A;, B;) a naopak, for-
malni koncept (A, By) je specializaci formalniho konceptu (As, Bs).

Hlavni véta konceptualnich svazt pak rika, ze kazda mnozina formalnich
konceptit ma pfimé zobecnéni (supremum) a piimou specializaci (infimum).

Pomoci L-rovnosti ~ definované pro libovolné univerzum X na systému
L-mnozin L~ (11) 1ze definovat L-rovnost na L-konceptualnim svazu tak, Ze
pro kazdé (Aq, By), (A, By) € B(X,Y, I) polozime

<A17 Bl) ~ <A27 BQ> = Al ~ A2 (: Bl ~ Bg) (39)
Poznamka 12. L-rovnost ~ na L-konceptualnim svazu B(X,Y, ) (a spe-

cialné jeji a-fez “~) hraje zasadni roli pii faktorizaci konceptudlnich svazi,
ktera je tématem néekolika praci tohoto souboru.
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3.4 Aplikace formalni konceptualni analyzy

K zékladnim aplikacim formalni konceptualni analyzy patii vizualizace dat.
Pomoci FCA lze neptehlednou datovou tabulku prevést na tplny svaz, ktery
miizeme uzivateli zobrazit pomoci Hasseova diagramu. Podle zkusenosti z pra-
xe se uzivatelé v Hasseovych diagramech snadno orientuji a jsou schopni
v nich vyhledavat riizné dosud neznamé souvislosti v datech. Vizualizaci dat
konceptualnim svazem lze ovSem pouzit pouze na neprilis velké kolekce dat.

Poznamka 13. Druhé ¢ast Hlavni véty o konceptualnich svazech riké, Ze po-
kud v konceptudlnim svazu vyznacime nékolik dulezitych koncepti (tzv. ob-
jektové a atributové koncepty), ziskdme dostatek informaci k tomu, abychom
z néj mohli zpétné rekonstruovat ptivodni forméalni kontext. V tomto smyslu
tedy konceptualni svaz nese tiplnou informaci o ptvodnich datech.

Nejprve se v nékolika prikladech zminime o aplikacich klasické formalni
konceptualni analyzy.

FCA umoziiuje uzivateli zkoumat tabulkova data v podobé snadno pocho-
pitelného a piehledného Hasseova diagramu. Uvedeme jeden piiklad aplikace
tohoto typu.

Priklad 13. V praci [31] se autofi zabyvaji analyzou zdrojovych kédi sta-
rych programi (napsanych v jazycich FORTRAN a COBOL), které pouzivaji
velké mnozstvi globalnich proménnych. Cilem bylo pokusit se zjednodusit
strukturu téchto programi pomoci FCA. Mnozinou objektt X stanovili au-
tofi mnozinu modult (tj. jednotlivych zdrojovych souborii), mnozinou atri-
butd Y mnozinu globalnich proménnych. Relace I zachycuje, které moduly
pracuji se kterymi proménnymi.

V préci je uvedeno nékolik metod (heuristickych i automatickych), jak
modifikovat vznikly konceptualni svaz tak, aby se to promitlo do zjednodu-
Seni provazanosti jednotlivych moduld programu (idedlnim pfipadem je do-
sahnout tzv. tree-like lattice, tj. svazu, jehoz ¢ast vznikla odebranim nejmen-
stho prvku je strom).

Zakladem téchto metod je zobrazeni konceptualniho svazu. Metody ne-
musi byt c¢inné, pokud je pivodni program prilis veliky a obsahuje prilis
mnoho zavislosti svych jednotlivych casti, tedy v piipadé, kdy je konceptu-
alni svaz prilis veliky a slozity.

V nasledujicim prikladé ukazeme, ze FCA lze pouzit i v situaci, kdy neni
mozné nebo vhodné zobrazit cely konceptualni svaz v jednom obrazku. Jedna
se o aplikaci z oblasti ziskavani informaci (Information Retrieval), v niz upfes-
nujeme vyhledavaci dotaz na zakladé nabidky, kterd je zkonstruovana z in-
formace o sousedech aktualniho prvku konceptudlniho svazu.
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Priklad 14. Necht X je mnozina webovych stranek, Y mnozina klicovych
slov, I(x,y) je pravdivostni hodnota tvrzeni ,,Stranka = obsahuje kli¢ové slovo
y*“. Uvazme forméalni koncept, jehoZ intent B je roven mnoziné {"jaguar"}.
Extent tohoto formalniho konceptu odpovida webovym strankam, které ob-
sahuji dané slovo. Jelikoz v nasem pripadé je hledany vyraz viceznacny, je
vhodné vyhledavaci dotaz upfesnit. Inteligentni vyhledavaci program miize
podle slov obsazenych v nalezenych strankach uzivateli nabidnout vhodna
upresnujici klicova slova tak, Zze najde nejvyznamnéjsi dolni sousedy aktudl-
niho formélniho konceptu. V nasem pripadé se mezi nabidnutymi slovy objevi
slova "cars", "dealers", "models", alei "cat" a "panthera onca". Pokud
si uzivatel nékteré z nabidnutych klicovych slov vybere, vyhledavac¢ vysledek
hledani upfesni.
Uvedeny systém byl popsan v praci [19]. Na webové strance

http://credo.fub.it/
je k dispozici experimentalni implementace vyhledavace.

Nékteré dalsi piiklady pouziti FCA lze nalézt v knize [18], nejnovéjsi
aplikace pak ve sbornicich konferenci ICFCA a CLA ([12], [22] jsou sborniky
z poslednich roéniki téchto konferenci). Existuje také nékolik softwarovych
nastroji (véetné komercnich), které vyuzivaji FCA.

V nésledujicich ptikladech uvadime nékolik aplikaci formalni konceptuélni
analyzy dat s fuzzy hodnotami atributi, zejména téch, které vzesly z prace
vyzkumného tymu pracovisté autora tohoto textu.

Piiklad 15. Faktorova analyza (viz napf. [26]) je matematickd disciplina,
ktera se zabyva moznostmi feseni nasledujici tlohy: k dané ¢iselné matici 1
nalézt matice A a B tak, aby matice A méla co nejmensi pocet sloupcii a
aby platilo I ~ A - B. Matice A (jejiz sloupce se nazyvaji faktory) pak mize
priblizné nahradit ptivodni matici I v tom smyslu, Ze sloupce matice I lze
priblizné vyjadrit jako linearni kombinace sloupcti matice A.

Ptivodni motivace faktorové analyzy pochéazi z experimentalni psycholo-
gie. Prvni préice o faktorové analyze [40] z roku 1904, se zabyvala hledanim
obecnych faktort lidské inteligence na zakladé vétstho mnozstvi empiricky
zjisténych dat.

Binarni faktorova analyza Tesi analogicky problém pro binarni matice,
jeji zobecnéni pak pro matice s hodnotami v obecném reziduovaném svazu.
V pracich [16, 10] je dokazano, ze v obou piikladech lze matice A a B zkon-
struovat pomoci vybranych forméalnich koncepti matice I.

Priklad 16. Fuzzy FCA byla pouzita k vyhodnocovani dotazniku IPAQ (In-
ternational Physical Activity Questionnaire), zaméfenych na zjistovani pohy-
bové aktivity populace [14]. V téchto dotaznicich odpovidaji respondenti na
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otazky tykajici se nejen pfimo pohybové aktivity, ale i dalSich zivotnich pod-
minek (vék, pohlavi, zda maji préci, jak ¢asto se divaji na televizi, zda koufi
apod.). Data jsou predzpracovana tzv. skalovanim a agregaci objekti. Vy-
sledkem je pak formélni L-kontext s Sesti agregovanymi objekty (muzi/zeny
s nizkou/stfedni/vysokou pohybovou aktivitou) a 42 atributy. Zkoumanim
formalnich konceptti tohoto formalniho kontextu pak lze nalézt odpovédi
na otazky o spolecnych vlastnostech lidi ze stejné skupiny, jako napftiklad:
z muzl a Zen s vysokou pohybovou aktivitou 81% vlastni jizdni kolo, 65%
mé zaméstnani, 21% kouti, 52% hodné chodi, 4% maji vysoky BMI (Body
Mass Index), 1% je obéznich.

Vyhodou pouziti FCA proti obvyklym statistickym metodam v tomto
pripadeé je, ze neni nutno doptfedu formulovat hypotézy, které se pak budou
testovat.

Piiklad 17. V préci [32] autofi jako pfiklad pouzili fuzzy FCA (v zobecnéné
podobé) k vybéru ¢asopisu vhodného k publikaci ¢lanku. Mnozinou objekti
byla mnozina c¢asopisti, které pripadaly v iivahu, jako atributy byly zvoleny
zékladni atributy Casopisu podle cita¢niho indexu (impakt faktor, polocas
citovanosti atd.). Hledany casopis vySel jako objekt s nejvétsim stupném
piislusnosti v mnoziné B, kde B je fuzzy mnozina atributti, charakterizujici
pozadavky na hledany casopis.

Poznamka 14. Na Katedfe informatiky PfF UP v Olomouci vzniklo v ramci
bakalarskych a diplomovych praci nékolik softwarovych produkti, pracujicich
na bazi fuzzy FCA. Software, ktery je soucasti prace [37], byl nékolik let
nasazen v praxi a vyuzivan.

4 Hlavni vysledky

V této casti popiseme hlavni vysledky praci tohoto souboru.

4.1 Problémy resené metodou aproximace

a faktorizace
Cilem mnoha uloh feSenych ve fuzzy logice je nalézt fuzzy mnozinu nebo
systém fuzzy mnozin v daném univerzu, spliujici néjaké dopredu zadané
pozadavky (omezeni). Zékladni tlohy, které jsou spojeny s pojmy uvedenymi
v predchozi ¢asti a které jsou studovany v pracich tohoto souboru, jsou tohoto
typu:

e nalézt L-jazyk pfijimany danym kone¢nym L-automatem,
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e nalézt konceptudalni svaz daného formalniho L-kontextu,
e nalézt vSechny pevné body daného L-uzavérového operatoru.

Podivejme se podrobné€ji na uvedené tulohy. V pripadé L-automatu M se
vstupni abecedou ¥ je jazyk prijimany timto L-automatem L-mnozinou v
univerzu X*. Cilem prvni tlohy je tedy nalézt jednu L-mnozinu, ktera ma

vvvvvv

cedou ).

Konceptuélni svaz B(X,Y, ) je mnoZinou vsech formalnich konceptt da-
ného formalniho kontextu (X, Y, I'). Kazdy formalni koncept je ovSem uspo-
fadanou dvojici extentu a intentu. Vsechny formélni koncepty tedy najdeme
tak, ze najdeme vSechny extenty (nebo intenty). Ve druhé tloze tedy hledame
mnozinu vsech extentil, tedy mnozinu vsech L-mnozin A € L¥ spliiujicich
omezeni AT = A (nebo, ekvivalentné, mnozinu vSech intentt coz je mnozina
L-mnoZin B € LY spliiujicich B! = B).

JelikoZ zobrazeni ' je L-uzdvérovym operatorem na mnoziné X, je tieti
uloha zobecnénim ulohy druhé. Pevné body L-uzavérového operatoru na
mnoziné X jsou L-mnoziny v X, cilem tteti tilohy je tedy opét nalézt mnozinu
L-mnozin v X, spliiujicich jisté dané podminky.

Jednim z disledkt pouziti fuzzy logiky ve druhé a treti tloze je, ze mno-
ziny, které jsou jejich feSenim, mohou byt zna¢né rozséhlé. Velikost (pocet
prvki) téchto mnozin obecné zavisi na velikosti pouzitého reziduovaného
svazu, pripadné na konkrétni volbé jeho prvkii.

U L-automatu (prvni tloha) vzniklého z externich (naméfenych) dat mi-
Zeme zase narazit na problém, Ze jeho velikost bude podstatné zaviset na
zvolené logické presnosti téchto dat (tedy na zvoleném reziduovaném svazu,
jehoZ hodnoty data pouzivaji), pfipadné na poc¢tu stupiii pravdivosti v au-
tomatu pouzitych.

Na vSechny tyto tlohy je tedy mozné pokusit se aplikovat metodu apro-
ximace a faktorizace, jejiz princip je popsan v Uvodu. Vznikaji nésledujici
konkrétni problémy, které jsou feseny v pracich tohoto souboru:

e K zadanému L-automatu nalézt minimalni L-automat, ktery pfijima
podobny jazyk [Prace 1].

e Prokoumat moznost aproximace daného formalniho L-kontextu for-
malnim kontextem s daty ze zvoleného mensiho reziduovaného svazu
L’ C L a odhadnout vzniklou chybu ve vysledném konceptudlnim svazu
[Prace 2].

¢ K zadanému L-konceptualnimu svazu nalézt svaz o mensim poctu prvki,
ktery bude ptivodni svaz dobfe aproximovat [Prace 4, 5].
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e K zadanému formalnimu kontextu najit podobny formalni kontext ta-
kovy, ze vysledny konceptualni svaz bude dobie aproximovat ptivodni
a bude mit mensi pocet prvka [Prace 4, 5].

e K zadanému uzavérovému operatoru nalézt mnozinu, ktera bude dobre
aproximovat mnozinu jeho pevnych bod a bude mit mensi pocet prvki
[Prace 6, 7].

Prace tohoto souboru se také zabyvaji dalsimi problémy, které v souvislosti
s feSenim uvedenych problému vznikaji (zejména aproximace a faktorizace
v reziduovanych svazech [Prace 3, 4, 5]).

4.2 Priblizna minimalizace fuzzy automatu

Problémem pfiblizné minimalizace L-automatu se zabyva [Prace 1|. Pokud je
znamo, jedna se o prvni prispévek, v némz je podminka rovnosti jazyka pfi-
jimanych ptivodnim a minimalizovanym automatem nahrazena podminkou
podobnosti téchto jazykt v uzivatelem predepsaném stupni.

Formulace problému je nasledujici: K danému L-automatu M a stupni
a € L nalézt co nejmensi L-automat M’ takovy, aby pro jazyky prijimané
témito automaty platilo

a < L(M) =~ L(M) (40)
(relace ~ je relace podobnosti L-mnozin (11)).

Poznamka 15. Prvotni motivace k feSeni tohoto problému pochézela z po-
¢itacové grafiky. V praci [20] autofi navrhli novou metodu komprese bitmapo-
vého obrazu pomoci tzv. vazenych automatii. Princip metody spociva v tom,
ze se komprimovana bitmapa popise jazykem, k némuz se sestroji vazeny
automat, ktery se poté minimalizuje. Vazené automaty predstavuji zvlastni
druh fuzzy automatii. Jejich pfibliznd minimalizace by odpovidala ztratové
kompresi obrazu (viz téZ podobnost barev v Pfikladu 5).

Metoda se zatim ukazuje jako neperspektivni kviili vysoké vypocetni na-
ro¢nosti. Problematika je pfehledné shrnuta v bakalafské préaci [41], ktera
obsahuje i softwarovou implementaci metody.

Priblizna minimalizace fuzzy automat ovsem muze najit uplatnéni v ji-
nych oblastech, kde se fuzzy automaty vyuzivaji.

Hlavni vysledky z [Préce 1] jsou tyto: je definovan tzv. stupern dostupnosti
stavii L-automatu M a je dokdzano, Ze pokud L-automat M’ vznikne z L-
automatu M vypusténim vsSech stavi, jejichz stupen dostupnosti je mensi
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nebo roven —a, pak je podminka (40) splnéna. Déle je pro dvojici determi-
nistickych L-automatti M a M’ formulovana nutna a dostateénd podminka
pro to, aby M’ byl minimalnim automatem spliiujicim (40).
Poznamenejme, Ze podobné jako u klasickych automatii je ke konstrukci
miniméalniho automatu pouzita relace nerozlisitelnosti stavli automatu. V pii-
padé L-automatii se ovSem jedné o L-ekvivalenci na mnoziné stavi, jejiz a-fez
je relace tolerance. PTi minimalizaci deterministickych L-automati se v praci
pouziva pokryti mnoziny stavii automatu jistymi bloky této tolerance. Je tedy
feSen specialni pripad problému faktorizace mnoziny podle relace tolerance.

4.3 Matematické zaklady: aproximace a faktorizace
v reziduovanych svazech

Zakladni motivaci pro [Prace 3, 4] je, Ze pro studium moznosti redukce ve-
likosti fuzzy systémi, pripadné mnozstvi dat jimi generovanych, pomoci L-
relace podobnosti bude uzitecné zabyvat se L-relaci podobnosti na podkla-
dové strukture stupni pravdivosti samotné, tedy na reziduovaném svazu L.
Roli L-relace podobnosti na reziduovaném svazu L hraje operace bire-
zidua <, ktera je interpretaci logické spojky ekvivalence. Uvedené prace se
zabyvaji jejim e-Fezem (pro pevné zvolené e € L), tedy relaci ~, definovanou

predpisem
ax~.b prave kdyz e<a <« b (41)

(relace =, je v [Prace 4] oznacovana ~., setkdme se téZ s oznafenim €«
které je v souladu se symbolikou z (15)).

Problém aproximace v reziduovanych svazech lze obecné zformulovat tak-
to: Naleznéte dostatecne malou mnozZinu stupni pravdivosti K, kterd dobre
aprorimuge zadanou mnoZinu stupniu pravdivosti M.

Poznamka 16. S uvedenym problémem se muzeme setkat v nasledujici situ-
aci: Je-li A: U — L fuzzy mnozina v univerzu U, pak obraz M = {A(u) | u €
U} 1ze chépat jako mnozinu stupiiti pravdivosti ,,pouzitych v A.“ Ukolem je
nalézt fuzzy mnozinu B: U — L, kterd je dobrou aproximaci mnoziny A a
pro kterou je mnozina K = {B(u) | u € U} stupnu pravdivosti ,pouzitych v
B* dostatecné mala.

Obecné feceno, vyhodou B proti A je jednoduchost. Mnozinu B muze byt
napfiiklad snazsi interpretovat uzivateli. Podle znamého Millerova fenoménu
[33] je pro ¢lovéka obtizné odlisit a konzistenté interpretovat vice nez 7 + 2
hodnot dané $kély (proménné). Jestlize tedy A ptedstavuje stupné, v nichz
predméty (napt. zbozi) spliiuji dané kritéria, mohlo by byt lepsi zobrazit
uzivateli mnozinu B misto A.
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Nésledujici definice byla formulovana v [Prace 2] a upfesnéna v [Prace
3]: Mé&jme dvé mnoziny M, K C L. Stupen app(M, K), v némz mnozina K
aproximugje mnozinu M, je definovan vztahem

app(M,K) = \ \/(a < b). (42)
aeEM beK
Jde tedy o stupen pravdivosti formule ,pro kazdé a € M existuje b € K
takové, Ze a a b jsou podobné (blizké)“.
V préci [Prace 3] jsou formulovany nasledujici dvé tlohy aproximace v
reziduovanych svazech.

Uloha 1. Najdéte k zadané (konecné) mnozing M C L a prahu e € L mnozinu
K takovou, ze

1. K aproximuje M alespon ve stupni e, tedy

app(M, K) > e, (43)

2. neexistuje K’ s |K’| < |K]|, pro které app(M, K') > e, tj. K je nejmensi
(vzhledem k poétu prvki) mnozina, ktera spliuje (43).

Uloha 2. Najdéte k zadané (konecné) mnozing M C L a prahu e € L mnozinu
K, kter je fesenim Ulohy 1 a navic

3. Pro kazdé K's |K'| = |K]| plati
app(M, K) > app(M, K'), (44)
tj. mezi mnozinami s | K| prvky K aproximuje mnozinu M nejlépe.

V [Préace 3] jsou zavedeny nékteré teoretické pojmy potifebné pro feseni
problému aproximace v reziduovanych svazech (stfedova mnozina, stfedovy
bod, optimalni stfedovy bod) a dokdzény nékteré jejich vlastnosti. Na zdkladé
téchto teoretickych poznatkt jsou uvedeny dva algoritmy, které fesi Ulohu 1
v pfipadé linearné usporadanych reziduovanych svazt.

Moznou vyhradou vici uvedenému pristupu je, ze mnozina K obecné neni
podalgebrou reziduovaného svazu L a ze tedy ve skutecnosti neni mozné
se pro dalsi praci s jejimi prvky omezit pouze na tuto mnozinu. Jednim
z tfeSeni tohoto problému je hledat mnozinu K pouze mezi podalgebrami
reziduovaného svazu L. Tato moznost byla rozpracovéna v [Préace 2].

Jinou moznosti je pouzit misto aproximace metodu faktorizace. Uvedeme
zakladni principy jejiho pouziti na reziduované svazy.

Relace =2, (41) je relace tolerance na mnoziné L. Hlavnim vysledkem
[Prace 4] je, zavedeni struktury reziduovaného svazu na faktormnoziné L/~
(oznacované také L/e). Prvky tohoto nového reziduovaného svazu L/~
(oznacovaného také jednoduse L/e) jsou maximalni bloky tolerance ~..
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Poznamka 17. Definici operaci reziduovaného svazu na mnoziné L/e zde
neuvadime, ¢tendf ji najde v [Préce 4].

Poznamka 18. Reziduovany svaz L/e lze chapat takto: uzivatel zvoli hod-
notu e € L, kterad indikuje prah takovy, ze stupné pravdivosti, jejichz stupen
podobnosti je vétsi nebo roven e bude povazovat za nerozlisitelné. Prah e
tedy urcuje maximalni pripustnou chybu pfi zméné stupné pravdivosti z L.
Prvky reziduovaného svazu L/e jsou mnoziny, které sdruzuji stupné pravdi-
vosti z L, jez je uzivatel ochoten povazovat za nerozliSitelné.

Pfechodem od reziduovaného svazu L k L/e tedy dochézi k redukci logické
presnosti [8].

Piiklad 18. Necht Ly je 11-prvkovy Lukasiewicziv fetézec L = {0,0.1,
...,1}, e=0.6. Pak L/e = {[0,0.4],[0.1,0.5],...,[0.6, 1]}. Reziduovany svaz
L/e je izomorfni se sedmiprvkovym Lukasiewiczovym fetézcem Lg.

Poznamka 19. Z predchoziho pfikladu jsou zfejmé i obtize, se kterymi je
nutno pii faktorizaci reziduovanych svazi pocitat: 1. Prvky ptivodniho rezi-
duovaného svazu L mohou nélezet vice (obvykle mnoha) bloktim tolerance =,
soucasné, 2. pro podstatnou redukci velikosti reziduovaného svazu je nutné
prikrocit ke znac¢né velkorysé hodnoté prahu e.

I pres tyto vyhrady lze pomoci faktorizace dojit k vyraznym vysledkiim
(viz napf. [Prace 4, Odstavec 4.4]).

[Prace 4] obsahuje podrobnou analyzu struktury faktorizovaného reziduo-
vaného svazu L/e. V [Préace 5] je tato problematika rozsifena na reziduované
svazy s tzv. zesilovaci pravdivosti (Truth Stresser, Hedge) [29)].

4.4 Faktorizace v konceptualnich svazech

Problémy, o nichz hovori odstavec 4.1, lze velmi dobfe demonstrovat na pri-
kladé fuzzy konceptualnich svazi. Uvazme nésledujici priklad.

Piiklad 19. Necht Ls je tiiprvkovy Lukasiewicziv fetézec (tedy Lo = {0, 0.5,
1}) a polozme X = {1, 22}, Y = {y1, y2}. Déle definujme Ly-relaci I tabul-
kou

I ‘ Y1 Y
zo | 0.0 0.0

Mnozina By, vSech formalnich Ly-koncepti formalniho Lo-kontextu (X, Y, I)
je tvorena nésledujicimi ¢tyimi Lo-koncepty:

<{SIZ‘1,(£2},®>, <{x1>0.5/x2}7{0.5/3/170.5/3/2}%
{1} % v, 92}), ({1} v},
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Zvolime-li misto reziduovaného svazu Ly pétiprvkovy Lukasiewicztv fetézec
L, (tedy Ly = {0,0.25,0.5, 0.75,1}) a ostatni parametry zadani nechame
stejné (az na trivialni zménu oboru hodnot relace I), pfibydou k vyse uve-
denym c¢tyfem formalnim koncepttim dalsi ¢tyfi:

{on, " o}, {21, % 1 }), (o, " 2}, A% 0, " ),
{070, 2 b Ly, " by (7 A%y w2},

Mnozina By, v8ech formalnich Ly-koncepti formalniho Ly-kontextu (X, Y, I)
ma tedy osm prvki.

Pokud bychom zvolili za L Lukasiewicztiv fetézec s jesté vétsim (lichym)
poctem prvki, bude vysledny konceptualni svaz opét vétsi. Pocet prvki kon-
ceptualniho svazu v tomto pripadé zavisi na poc¢tu prvka Lukasiewiczova Te-
tézce L kvadraticky. Plati totiZ, Ze extentem je libovoln4 L-mnozina A € L,
splnujici podminku:

A(z1) =1 nebo A(zy) < A(zy) —0.5
a intentem libovolnd L-mnozina B € LY, které spliiuje
B(y1) = B(y2) nebo 0.5 < B(y1) < B(y).

V krajnim piipadé, pokud zvolime za L cely interval [0, 1], bude vysledny
konceptualni svaz nekonecny.

V praci [3] (viz téz [8, 11]) je navrZzena metoda redukce poctu prvkiu
konceptualniho svazu pomoci faktorizace. Tato metoda vyuziva L-relaci ~,
definovanou na libovolném L-konceptualnim svazu B(X,Y, I) vztahem (39).
Relace ~ je L-rovnosti na B(X,Y, I), pro libovolné dva L-koncepty

(A1, B1), (A2, By) € B(X, Y, )

hodnota (A, By) = (A, Bs) vyjadiuje jejich ,podobnost* (,blizkost*). Pro
libovolné a € L je nyni fez “~ relaci tolerance (viz odstavec 2.4).

V préci [3] je ukdzéno, Ze tato relace tolerance je kompatibilni se struktu-
rou uplného svazu na B(X,Y, I). Podle vysledki [23] (které navazuji na [21])
tedy na faktormnoziné B(X,Y, I)/*~ existuje struktura tplného svazu.

Nepotiebujeme-li tedy rozliSovat mezi L-koncepty, jejichz stupen podob-
nosti je alespoi a (neboli, jsme-li ochotni ,zanedbat malé rozdily mezi kon-
cepty®), muzeme piejit od jednotlivych L-koncepti k mnozindm takto po-
dobnych L-konceptt, tj. ptejit od konceptualniho svazu B(X,Y, I) ke svazu
B(X,Y,I)/*~.
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V [Préce 4, Theorem 14| je dokazéno, ze svaz B(X,Y, 1)/~ je koncep-
tualnim svazem formalniho kontextu, ktery lze snadno odvodit z ptvodniho
L-kontextu (X, Y, I). Pfesnéji feceno, svaz B(X,Y,I)/*~ je izomorfni L/a-
konceptualnimu svazu B(X, Y, [I]*) (definici L/a-relace [I]*: X x Y — L/a
Ctenaf nalezne v [Préce 4]).

Poznamka 20. Pomoci tohoto vysledku lze tedy nalézt faktorizovany L-
konceptualni svaz tim, Ze se nalezne konceptualni svaz modifikovanych vstup-
nich dat.

Poznamka 21. Tento vysledek je zajimavy tim, ze prevadi faktorizaci jisté
struktury nad mnozinou stupi pravdivosti L (L-konceptualniho svazu) podle
tolerance dané stupni podobnosti jejich prvkt na faktorizaci samotné mno-
ziny stupni pravdivosti L.

Poznamka 22. Podle [13] je svaz B(X,Y, I)/a také izomorfni L-konceptu-
alnimu svazu B(X, Y,a — I) (kde @ — I je posun L-mnoziny I (13)). Tyto
dva vysledky jsou velmi pribuzné, malé pfednost naseho vysledku spociva
v tom, Ze reziduovany svaz L/a ma méné prvki, neZ reziduovany svaz L, coz
znamend mensi naroky na ulozeni vstupnich dat a konstrukci konceptualniho
svazu.

[Prace 5] zobectiuje tyto vysledky na tzv. konceptualni svazy se zesilovaci
pravdivosti (hedges) [15].

4.5 Zobecnéni na mnoziny pevnych boda uzavérovych
operatoru

V [Préce 6, 7] je problematika praci [Prace 3, 4] zobecnéna na mnoziny pev-
nych bodl uzavérovych operatort.

V téchto pracich se uvazuje mnozina (univerzum) X s uzévérovym ope-
rdtorem C' : LX — LX a zkoumaji se moznosti sniZeni velikosti mnoZiny
fix(C') pevnych bodi tohoto uzévérového operatoru pomoci aproximace a
faktorizace.

Poznamka 23. Priklad 10 ukazuje, Ze se skutecné jedné o zobecnéni.

V [Préace 6] jsou uvedeny zobecnéné verze vysledkt prvni ¢asti [Prace 3].
Jsou definovany pojmy stfedového bodu, stfedové mnoziny a optiméalniho
stfedového bodu v mnoziné fix(C'), které lze pouzit k aproximaci prvki této
mnoziny.

V préci [Prace 7] je zkouména faktormnozina fix(C')/*~, kde *~ je a-Fez
(pro zvolené a € L) podobnosti L-mnozin, definované pfedpisem (11). Je
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ukazano, ze tato mnozina ma strukturu iplného svazu, a je také formulovan
a dokazan efektivni zptsob nalezeni vSech jejich prvkid. Maximélnimi bloky
tolerance “=, které jsou prvky této faktormmnoziny, lze nahradit jednotlivé
prvky pavodni mnoziny fix(C').

Vyznam vysledkt praci [Prace 6, 7] spo¢iva v jejich obecnosti. Jelikoz
zobrazeni ' indukované formalnim L-kontextem je uzavérovy operator a pii-
slusny konceptualni svaz je izomorfni mnoziné jeho pevnych bodt, lze tyto
vysledky aplikovat i v oblasti L-konceptualnich svazu.

Poznamka 24. Casopisecka prace [Prace 6] se zabyva zobecnénim problema-
tiky FeSené v ¢asti konferen¢niho piispévku [Prace 3|. Proto obé prace maji na
zacatku uveden stejny priklad. V chystané rozsitené casopisecké verzi prace
[Prace 3| bude tivod zménén.

5 MozZnosti dalsiho vyzkumu

Prace tohoto souboru se zabyvaji aktualni a originalni problematikou v ob-
lasti fuzzy struktur.

Kombinace vysledki uvedenych v pracich tohoto souboru prinasi rizné
naméty pro dalsi vyzkum. Uvedeme zde nékteré z téch, které jsou pfipraveny
k publikaci, rozpracovany, pripadné které se chystame v blizké dobé otevrit.

U deterministickych L-automatt [Prace 1] zistalo jako nedofeseny pro-
blém dopracovani hlavnich vysledkd v konkrétni postup (algoritmus) jejich
priblizné minimalizace. Nabizi se vyuzit novéjsich vysledkt o aproximaci v re-
ziduovanych svazech [Prace 3| a pokusit se napfiklad jako prvni krok mini-
malizace aproximovat stupné koncovosti jednotlivych stavi (tj. jednotlivé
hodnoty L-mnoziny @) hodnotami z néjaké mensi mnoziny, vypocitané al-
goritmy, které jsou v praci [Prace 3] uvedeny. Podstatné pro vyzkum v této
oblasti bude i studium existujicich aplikaci deterministickych L-automati a
moznosti vyuziti vysledkd o pfiblizné minimalizaci v téchto aplikacich. To
by mohlo byt perspektivni vzhledem k tomu, Ze ptiblizna minimalizace fuzzy
automattl je novym, v literature zatim nezpracovanym tématem.

V oblasti aproximace v reziduovanych svazech je jiz pripravena k publikaci
rozsitena verze prace [Prace 3], obsahujici algoritmus na feseni Ulohy 2 z odst.
4.3.

Problém redukce velikosti L-konceptualniho svazu je stale aktualnim té-
matem. Dalsi vyzkum se bude zabyvat moznostmi pouziti aproximace v kon-
ceptudlnich svazech, které byly zatim ¢astecné zkoumany v pracich [Prace 2,
6], a také moznostmi efektivnéjsi faktorizace.

Pomoci [Préce 4, Theorem 12] lze hlavni vysledek [Prace 7] rozsifit nasle-
dujicim zptisobem. Je-li C': LX — LX uzavérovy operator, lze s jeho pomoci
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zavést novy uzavérovy operator C*~ na systému (L/a)* vSech L/a-mnoZin
v X tak, Ze polozime

C"*([A, B]) = [C(A)*, (C(A)")a]

(vyuzivdme ztotoznéni mnozin (L/a)* a L~ /a z [Prace 4, Odst. 4.1] a sym-
boliku z [Prace 7]). Uplny svaz fix(C)/~ (tj. mnoZina pevnjch bodt ope-
ratoru C' faktorizovana podle tolerance “~), kterym se zabyva [Prace 7] je
pak roven (opét po ztotoznéni (L/a)X a LX /a) mnoziné viech pevnych bodi
uzévérového operatoru C°~.

Zkusenosti s faktorizaci reziduovanych svazt, L-konceptualnich svazi a
mnozin pevnych bodi L-uzavérovych operatoru lze vyuzit k vypracovani te-
orie faktorizace obecnéjsich L-struktur. Konkrétnéji, mame-li ddnu mnozinu
X s L-ekvivalenci (nebo L-rovnosti) ~, lze na faktormnoziné X/~ (kde
a € L je zadany préh) pfirozenym zpusobem definovat novou ,zbytkovou*
fuzzy rovnost. Je-li navic na mnoziné X definovana binarni L-relace, je mozné
zavést indukovanou bindrni fuzzy relaci i na faktormnoziné X /“~. Do tohoto
ramce spada naptiklad problém faktorizace tzv. L-usporadanych mnozin i
dalsi zajimavé aplikace. Prvni vysledky v tomto sméru jsou jiz pfipraveny
k publikaci.
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Abstract. The paper presents a contribution to minimization of fuzzy automata.
Traditionally, the problem of minimization of fuzzy automata is described as fol-
lows. Given a fuzzy automaton, describe an automaton with the minimal number
of states which recognizes the same language as the given one. In this paper,
we formulate a different problem. Namely, the minimal fuzzy automaton we are
looking for is required to recognize a language which is similar to the language
of the given fuzzy automaton to a certain degree a prescribed by a user, such as
a = 0.9. That is, we relax the condition for the languages of the automata from
being equal to a weaker condition of being similar to degree a. The condition of
being equal is a special case for a = 1. We present answers to several problems
which arise in this setting including a description of a minimal fuzzy automaton
satisfying the above condition. The question of how to efficiently construct the
minimal automaton is left as an open problem.

1 Problem setting

The idea of extending ordinary automata by principles of fuzzy logic goes back to
the early eage of fuzzy logic, see e.g.[12], [13] for some of the early papers. Since
then, many papers on fuzzy automata and their applications appeared, see [11] for an
overview. Recent approaches use general structures of truth degrees, instead of the com-
monly used unit interval [0, 1]. As a main motivation for studying fuzzy automata serves
the fact that many languages are fuzzy in that words belong to such languages to possi-
bly intermediate degrees, rather than just 1 (belongs) and 0 (does not belong).

One of the classic problems of finite automata is that of a minimization. Given an
automaton M, one looks for an equivalent automaton M’ with as small number of states
as possible. By “equivalent”, one means “recognizing the same language”. In all the pa-
pers we found, the problem of minimization of fuzzy automata is formulated essentially
the same way as for the ordinary automata. That is, given a fuzzy automaton M, one
is looking for a fuzzy automaton M’ with as small number of states as possible such
that L(M) = L(M'). Note that L(M ) denotes the language of M, i.e. the fuzzy set
of words recognized by M. Such requirement might be considered too strong. Namely,
one might require instead that £() and L(M") be highly similar but not necessarily



equal. With an appropriate definition of similarity of fuzzy languages, one might re-
quire that L(M) and L(M') be similar in degree at least 0.9, for instance. Relaxing
the requirement of equality of languages by replacing it with a weaker requirement of
similarity (approximate equality), presents a new problem. The rationale behind is that

1. from the point of view of user’s needs, an automaton recognizing approximately
the same language may be acceptable,

2. with the weaker requirement of approximately equal languages, the number of
states of the resulting minimal automaton may decrease compared to when we re-
quire equality of languages.

The present paper presents several results regarding approximate minimization of
fuzzy automata including a description of a minimal automaton which recognizes a
language which is similar to the language of a given automaton in a given degree a or
higher.

2 Preliminaries

In this section, we survey basic notions from fuzzy logic and refer to [1], [3] for further
details. Our basic structure of truth degrees is a complete residuated lattice. A reader
not familiar with the framework of residuated lattices can go directly to Section 3.1 and
use the particular setting described in the second sentence of Section 3.1.

A complete residuated lattice is an algebra

L = <L7/\7\/7®7_>70’ 1>

such that (L,A,V,0,1) is a complete lattice with 0 and 1 being the least and greatest
element of L, respectively; (L,®,1) is a commutative monoid (i.e. ® is commutative,
associative, and a® 1 = 1 ®a = a for each a € L); ® and — satisfy so-called adjointness
property: a®b < ciff a < b — ¢, for each a,b,c € L. Elements a of L are called truth
degrees. ® and — are (truth functions of) “fuzzy conjunction” and “fuzzy implication”.
“Fuzzy negation” — is defined by —a =a — 0 fora € L.

A common choice of L is a structure with L = [0,1] (unit interval), A and V be-
ing minimum and maximum, ® being a left-continuous t-norm with the corresponding
residuum —. Three most important pairs of adjoint operations on the unit interval are
Fukasiewicz: a® b = max(a+b—1,0), a — b =min(1 —a+b,1); Godel: a® b =
min(a,b), a — b=1if a < b, a — b = b otherwise; Goguen (product): a® b =a-b,
a—b=1ifa<b,a—b= Z otherwise. Examples of finite residuated lattices include
those defined on finite subchains of [0, 1]. Taking L = {0,1} gives us a two-element
Boolean algebra (structure of truth degrees of classical logic).

Given L which serves as a structure of truth degrees, we define the usual notions:
an L-set (fuzzy set) A in universe U is a mapping A: U — L, A(u) being interpreted
as “the degree to which u belongs to A”. Let LY denote the collection of all L-sets in
U. Operations with L-sets are defined componentwise. For instance, the intersection of
L-sets A,B € LY is an L-set AN B in U such that (AN B)(u) = A(u) A B(u) for each
u €U, etc. Given A, B € LY, we define a degree A ~ B to which A and B are equal by

AxB= N (A(u) < B(u)), )

uclU



where a <+ b = (a — b) A (b — a). (1) generalizes ordinary equality since A = B iff
A = B = 1. Described verbally, A ~ B is a degree to which for each u € U, u belongs to
A iff u belongs to B.

3 Approximate minimization

3.1 Fuzzy automata

We use a definition of fuzzy automata from [1]. A reader not familiar with the frame-
work of residuated lattices can, without losing much, replace L by the unit interval
[0,1]; A and V by the operations of minimum and maximum on [0, 1]; ® and — by
Lukasiewicz operations (see Section 2), and take a <> b = 1 — |a — b|. For a complete
residuated lattice L = (L, A,V,®,—,0,1), an L-automaton M over a finite alphabet X
is defined as a tuple (Q,X, Oy, OF,d) of a finite set Q of states, an alphabet X, an L-set
Qy in Q of initial states, an L-set O in Q of final states, and an L-relation 6 between
0,%,and Q. For q,¢' € O, s € £, 8(q,s,q) is the degree to which the L-automaton M
can transfer from g to ¢’ if the actual input symbol is s.
For any input word o0 = s7 ..., wWe set

a(qv(x7q/) = \/ 5(40731741)/\"'/\S(Qn—lasm%)a
q()«m«‘InEQ/
q90=49,9n=9
(L( = \/ Qlq)r8(q,0,4)AOr(q).
9,9'€Q

8(g,0,¢q") is the degree to which M can transfer from ¢ to ¢’ having o at the input. If o
is the empty word €, we get

n_ [lifg=¢
d(q.8,q') = {0 otherwise.

The L-set L(M) is called the L-language recognized by M.

The degree Q;(a,qo) to which M will reach the state g by the input word o, and
the degree QF(qo, ) to which M will accept the input word o@ when starting from g
are defined as follows:

Q1(at,q0) = \/ Qi(q) A8(q,0,90), Qr(q0,%) = \/ 8(q0. % q) A Qr(q).

qeQ q€0

One can easily see that

01(q0) = Q1(&,90), Or(q0) = Qr(qo,€)-

3.2 Deterministic fuzzy automata

We use the definition of a deterministic fuzzy automaton from [2]. An L-automaton M
is deterministic if there is a state go € Q, called the initial state, such that

01(q) = { Lifg = go.

0 otherwise,



and for any state g; € Q and symbol s € X there is a state g € Q such that

_ 1 lfq ={q2,
8(q1,s,9) = {0 otherwise.

For ¢ and ¢, above we write g» = 8(q1,s). Therfore, & can be regarded as an ordinary
function, called transition function. If M is deterministic with the initial state gy and
transition function d then we write M = (Q, X, qo, QF,9). For a fixed symbol s € ¥ we
also write (g, s) = 8(¢) and thus obtain a mapping d;: Q — Q.

Note that it was proved in [2] that if our complete residuated lattice L satisfies that
every complete sublattice generated by a finite L' C L is finite, then every L-automaton
can be replaced by an equivalent deterministic automaton. As observed in [7], one case
when this condition is satisfied is when the underlying lattice is distributive.

3.3 The problem of approximate minimization

Our problem can be formulated as follows. Given an L-automaton % and a similarity
threshold a € L, find an L-automaton M’ such that

(L(M) = L(M')) > a. 2
Note that (2) is the case iff for each input word o we have
([L(M)](a) & [L(M))(a) = a,

cf. (1). Measuring similarity of languages using « is the technical reason why we
consider logical connectives on the lattice of truth degrees.

In the ordinary setting, minimization of an automaton involves removal of inac-
cessible states followed by factorization using an equivalence relation which represents
indistinguishability of states. In our setting, (in)accessibility comes in degrees, i.e. there
are degrees to which a state is (in)accessible. In Section 3.4, we show an appropriate
“graded version” of a well-known fact saying that removing inaccessible states does
not change the language recognized by an automaton. As to minimization, the situation
is more complex in the setting of an approximate equality. We restrict ourselves to the
case of deterministic fuzzy automata and present a result describing a minimal fuzzy
automaton M’ for a given M satisfying (2). The following example shows that approx-
imate minimization is non-trivial in the sense that it can lead to a smaller number of
states.

Example 1. Let n be a positive integer and L = [0, 1] be equipped with the Lukasiewicz
structure. Consider a deterministic L-automaton M = (Q,X,qo,OF,d) with the set of
states Q = {q0,q1,---,qn}> L= {s}, Or(g;) =27 fori < n, Qr(q,) = 0, and 3 defined
by 8(gi,s) = gi+1 for i < n and 8(q,,s) = g,. The automaton M for n = 3 is depicted
in Fig. 1. The values Qr(g;) are indicated inside the circles representing states ;.

It is easy to see that the language £ = L(M) of M is given by

: 27 fori<n
1\ 9
L<S)_{O fori > n.



Fig. 1. Automaton M.

Since for i # j we have Qr(q;i) # Qr(g;) there does not exist a deterministic fuzzy

automaton /M’ with the number of states less than n + 1 recognizing the same language

as M. Therefore, the automaton is minimal in the ordinary sense. Consider now a = %.

Then there exists and L-automaton M’ with just two states satisfying (2). Namely, one
can put 0’ = {qp,¢1 }, L= {s}, O (¢p) = 1, O (¢}) = § and define & by &' (g 5) = ¢}
3(q},s) = ¢ (see Fig. 2). Therefore, approximate minimization can, indeed, decrease

o

Fig. 2. Automaton M’.

the number of states of a fuzzy automaton which is minimal in the ordinary sense.

3.4 Inaccessible states

For any subset Y C Q, we can construct a new L-automaton M’ = (Q',%, 0}, 0, %)
by removing the states belonging to Y from the automaton /M. The set of states Q' of
M’ is equal to the set Q\ Y, the L-sets Q) and Q} are constructed by restriction of the
L-sets Q;, and OF to the set Q', and the transition L-relation & between Q’, X, and O’
is constructed by restricting the L-relation 8 to the Cartesian product Q' x X x Q.

For any state ¢ € Q we define the accessibility degree (Acc(M))(g) of ¢ by

(Acc(M))(q) = \/ Qi(a,q). 3)

oer*
This defines the L-set Acc(M) of accessible states of M.

Theorem 1. If the L-automaton M’ results from an L-automaton M by removing all
states q such that (Acc(M))(q) < —a then condition (2) is satisfied.

Proof. For any input word o0 = s ...s, and (n+ 1)-tuple of states qo, ..., g, set

(A()(q0---qn) = Q1(q0) AN (qo,51,491)

/\'"/\S(C]nflasnvqn)/\QF(Qn) (@)
and
V)= \/  (A(@)(q0--qn)- (5)
q0,---qn€Q

{q0,--4n Y20’



The condition {qo, .. .,g,} € Q' means that there is an index i such that for the state
gi» (Acc(M))(gi) < —a. Thus, V(o) < —a. We have

(L(M))(0) = (L(M))(00) vV (@), (6)

which implies that (L(M))(a) < (L(M))(a), which is equivalent to (L(M')) () —
(L(M))(ar) = 1. It remains to be shown that (L(M))(a) — (L(M))(a) > a,i.e.a®
(L(M))(a) < (L(M')) (), which is true. Indeed,

a®(L(M))(a) = a®@ V(o) V (L(M))() =
= (@@V(a) V(@@ (L(M))(a) <
<(a®-a)V(a@(L(M))(a)

< (L(M)) ().

=a® (L(M))(o) o)

Corollary 1. If M’ results from M by removing a state q, then
~Ace(M)(q) < (L(M) = L(M)).

Proof. Immediately from Theorem 1 by observing that Acc(M)(g) < —a is equivalent
to a < —Acc(M)(q), and that b < ¢ iff for each @ € L: a < b implies a < c. a

Corollary 1 says that if we remove a state g, then the statement “if ¢ is inaccessible
then L(M) is equal to L(M')” is true (in degree 1) if interpreted in a fuzzy logic with
L as the structure of truth degrees. To see this, just use basic rules of semantics of fuzzy
logic [3]. Obviously, if L is the two-element Boolean algebra, this brings us to the realm
of ordinary automata and Corollary 1 becomes the well-known statement saying that if
M’ results from M by removal of inaccessible states then L(M) equals L(M"). Note
that if M is deterministic then the accessibility degree of any of its states is equal to 0
or 1 only. In this case, states with accessibility degree 0 and 1 are called inaccessible
and accessible, respectively. If M contains accessible states only, it is called accessible,
see e.g. [4].

3.5 Approximate minimization

Suppose that M = (Q, X, qo, OF,9d) is an accessible deterministic L-automaton. For a €
L we call aset P C Q a set of a-similar states if there is a ¢ € L such that

N\ (Qr(g) < ¢) > a. @)

qeP

Let Q' be a covering of Q, i.e. a set of non-empty subsets of Q whose union is Q.
Q' is called an a-covering of M if it contains only sets of a-similar states. Q' is called
invariant if for any ¢} € 0/, s € L there is a ¢ € Q' such that 8,(¢}) C ¢5.

Q' is called minimal invariant a-covering if it is an invariant a-covering with the
minimal number of elements.



Since the partition {{g} | ¢ € O} is an invariant a-covering of M, there always
exists a minimal invariant a-covering of M.

Let Q' be a minimal invariant a-covering of M. We construct a new deterministic
L-automaton M’ = (Q', £, ¢, O, ') as follows. We choose g, to be any element of Q'
containing the initial state go of M (such g, exists since Q' is a covering), set Q% (¢') =
¢, where ¢ € L satisfies A\ ey (Qr(q) < ¢) > a (existence of ¢ follows from the fact
that ¢’ is a set of g-similar states), and, finally, set &'(¢},s) = ¢5 where ¢, € Q' is any
element such that §,(¢}) C ¢} (¢5 exists since Q' is an invariant covering).

Example 2. Let L be the standard Lukasiewicz algebra on [0, 1]. The deterministic L-
automaton M = (Q,X,qo, OF,d) in Fig. 3 over alphabet X = {s,7} is minimal in the
ordinary sense.

Fig. 3. 0.75-covering on L-automaton.

Consider the covering Q' = {¢,, ¢} } of the set of states Q, where ¢, = {¢o,¢1} and
q) ={q1,92}. The elements, i.e. sets of states, are indicated in Fig. 3 by dashed ovals.
This covering is invariant:

85(q0) = qo. 85(q1) = qo, hence 8,(qy) < qj,
8s(q1) = g0, 85(q2) = q1, hence 8(¢}) € o,
&(q0) = q1, 8(q1) = g2, hence & (q;) C ¢,
& (q1) = g2, 8:/(q2) = g2, hence 8,(q’]) C q’]

For a = 0.75, Q' is an a-covering of M: for g, we can set ¢ = 0.75, and for ¢/, ¢ =
0.25. This covering is a minimal invariant a-covering of . Indeed, the only covering
with less number of elements is equal to {Q}, but the set Q is not a set of a-similar
states. Thus, it is possible to reduce the number of states of the automaton to 2 and 2 is
the minimal number of states of an L-automaton %" satisfying (2). The automaton M’
constructed from the covering Q' is shown in Fig. 4.

Fig. 4. Minimized L-automaton.



Now we prove our main results concerning automaton M’.
Theorem 2 (similarity of A and M’). Automata M and M’ satisfy condition (2).

Proof. By definition of M’, 8(qo,€) = qo € q(, and if ¢ € ¢’ then for any symbol s,
3(q,s) € &'(q',s). Put together, for any input word o € £*, 8(go, ) € & (g, ). Hence
we get Or (0, &) < Or(qp, @) = a. O

Theorem 3 (minimality of M’). Let M" be a deterministic L-automaton such that
L(M")~ L(M) > a. Then |Q"| > |Q/|.

Proof. Let M" = (Q",%, g, 0}, 8"). For any state g € Q" we construct a set P(¢"") C

0 by letting
P(q") = {8(q0, ) | 8"(qg, ) =4"}.

Since M is accessible, for any g € Q there exists a word o € X* such that 8(¢gp,a) = g.
If we set ¢” = 8" (q(), o), we obtain g € P(q"). Hence, the system {P(q") | ¢" € 0"} is
a covering of Q.

From the condition L(M") = L(M) > a we obtain that for any g € P(¢") it holds
Or(q,0) < Q%(q",a) > a, thus the sets P(q") are sets of a-similar states.

Now we show that {P(q") | ¢" € Q"} is an invariant a-covering. Indeed, for any
q" € Q" and symbol s € T we have

8(P(q")) = {8(q,5) | g € P(¢")} =
= {8(qo,0s) | & € X such that 8" (g, ) = ¢"} C
C {8(qo,as) | o € X such that 8" (g, as) = 8" (q",5)} C
C {8(qo,B) | B € ~ such that 8" (qg,B) = 8" (¢",s)} =
= P(&{(¢")).

Since the number of states of M " is greater than or equal to the number of elements
of {P(q") | " € Q"} (the mapping P need not to be injective), it is greater than or equal
to the number of states of M’. Indeed, {P(q") | ¢" € Q"} is an invariant a-covering
while the set of states of M’ forms a minimal invariant a-covering. This proves the
theorem. O

4 Future research and open problem

In general, the future research should focus on various phenomena regarding finite fuzzy
automata where the phenomenon of approximation plays a role. This paper presents one
example of such phenomena. Related attempt can be found in [6] The following is an

Open Problem: Find an efficient algorithm for a construction of a minimal ap-
proximately equivalent fuzzy automaton, as defined in this paper. Furthermore,
study the related complexity issues.

Acknowledgement Research of the first author supported by grant MSM 6198959214. This is an
extended version of a paper presented at JCIS 2007.
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Approximating Infinite Solution Sets by
Discretization of the Scales of Truth Degrees
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Abstract— The present paper discusses the problem of ap-
proximating possibly infinite sets of solutions by finite sets of
solutions via discretization of scales of truth degrees. Infinite
sets of solutions we have in mind in this paper typically appear
in constraint-based problems such as ‘“find all collections in a
given finite universe satisfying constraint C”. In crisp setting,
i.e. when collections are conceived as crisp sets, the set of all
such collections is finite and often computationally tractable.
In fuzzy setting, i.e. when collections are conceived as fuzzy
sets, the set of all such collections may be infinite and, ipso
facto, computationally intractable when one uses the unit interval
[0,1] as the scale of membership degrees. A natural solution
to this problem is to uses, instead of [0, 1], a finite subset K
of [0,1] which approximates [0,1] to a satisfactory degree.
This idea is pursued in the present paper. To be sufficiently
specific, we illustrate the idea on a particular method, namely,
on formal concept analysis. We present several results including
estimation of degrees of similarity of the finitary approximation
to the possibly infinite original case by means of the degree of
approximation of K of [0, 1].

I. INTRODUCTION AND PROBLEM SETTING

Using the real unit interval [0, 1] as a scale of truth degrees
is the most common choice in fuzzy logic applications. The
aim of our paper is to bring to the attention one aspect
of using [0,1]. Namely, given a universe set X, the set
[0,1]% of all fuzzy sets in X is infinite even if X is finite.
While this fact is advantageous from the point of view of
representation capability of fuzzy sets in X, there are apparent
disadvantages of using [0, 1] as well. Namely, using [0, 1] can
lead to problems which are computationally not feasible even
if the corresponding crisp problems, i.e., problems with [0, 1]
replaced by {0, 1}, are computationally tractable. Examples of
these problems can be drawn from data mining tasks where
one tries to extract all collections of elements of some set, say
X, which satisfy certain constraint C'. When “collection” is
understood as a set, the search space is 2% and the solution
set {A € 2% | A satisfies C} can be efficiently computable.
On the other hand, when “collection” is understood as a
fuzzy set, both the search space [0,1]% and the solution set
{A € [0,1]%] A satisfies C} can be infinite. In such a
case, problem of computing the solution set is not feasible
in principle. A natural idea in this case is to consider a finite
subset K of [0,1] which is a “good approximation” of [0, 1].
Then both KX and the solution set {4 € KX | A satisfies C'}

1-4244-1214-5/07/$25.00 ©2007 IEEE
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are finite and the solution set can be a good approximation of
the original infinite solution set {4 € [0,1]% | A satisfies C'}.
In our paper, we attempt to formalize the above considerations.
We provide general results which address several issues of the
idea of approximating an infinite solution set by a finite one.
In particular, we obtain approximation formulas and a result
which enables us to infer, given a required approximation
level, how to select a K which guarantees the required
approximation level.

We demonstrate our ability to approximate infinite solution
sets by several examples. For illustration, we consider formal
concept analysis (FCA, see [6]) which is a particular method
of knowledge extraction. FCA deals with object-attribute data
describing relationship between objects and attributes. In more
detail: an input for FCA is a data table with rows correspond-
ing to objects, columns corresponding to attributes, and table
entries containing degrees to which objects have attributes.
In its basic setting, FCA considers degrees 0 and 1 only,
meaning that each object has/does not have an attribute. The
output of FCA is a hierarchically ordered set of conceptual
clusters extracted from the data. Since it is often the case that
attributes are fuzzy rather than bivalent (attributes apply to
objects to various degrees), one can consider an extension of
FCA using arbitrary truth degrees from the real unit interval
[0,1] as table entries, see [2], [3]. The output of FCA in this
case is again a hierarchy of clusters. It can happen, however,
that the hierarchy is infinite due to the fact that we have shifted
from a finite scale {0,1} to the interval [0, 1]. This infinite
scale is in fact an infinite solution to the clustering problem
which we want to approximate by a finite one. Using general
results proposed in this paper, we are able to replace [0, 1]
by a suitable finite scale K C [0, 1] which, being used as a
structure of truth degrees, produces a finite solution (hierarchy
with finitely many clusters) which is computationally tractable
and approximates well the infinite one.

Section II presents preliminaries. Section III present our
approach and results. In Section IV, we outline some further
issues connected to the present problem.

II. PRELIMINARIES

The basic concept in fuzzy logic is that of a structure of
truth degrees which represents a set of truth degrees we use
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to describe graded truth of propositions (e.g., graded rela-
tionship of objects, graded properties of objects, similarities
of values, etc.) plus logical connectives (e.g., conjunction,
implications, ...) which are used to calculate truth degrees
from other truth degrees. In this paper we are going to use
so-called complete residuated lattices as our structures of
truth degrees. This choice is general enough because complete
residuated lattices include the popular t-norm-based structures
of truth degrees as well as finite structures of truth degrees
which we use to approximate the infinite ones. The rest of
this section presents an introduction to the complete residuated
lattices and derived notions we will need in the sequel. Further
details can be found e.g. in [2], [7], [8], a good introduction
to fuzzy logic and fuzzy sets is presented in [9].

A complete residuated lattice [8] is an algebra

L=(L,AV,® —,01) (1)

such that (L, A, V, 0, 1) is a complete lattice with 0 and 1 being
the least and greatest element of L, respectively; (L, ®, 1) is a
commutative monoid (i.e. ® is commutative, associative, and
a®1=1®a = a for each a € L); ® and — satisfy so-called
adjointness property:

a®b<c iff a<b—c 2)

for each a,b,c € L. Elements a of L are called truth degrees.
® and — are (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. For each complete residuated lattice (1)
we consider a derived (truth function of) logical connective <
(“fuzzy equivalence”) defined by a < b = (a — b) A (b — a).
By a™ we denote a ® - - - ® a (n-times).

A common choice of L is a structure with L = [0, 1] (unit
interval), A and V being minimum and maximum, ® being a
left-continuous t-norm with the corresponding —. Three most
important pairs of adjoint operations on the unit interval are:

L a®b = max(a+b-—1,0),
Luk : 3
ukasiewicz:  © min(l —a+ b,1), 3)
a®b = min(a,b),
Godel: b — 1 ifa<b, 4
a7 =\ otherwise,
a®b = a-b,
Goguen (product): if a < b, ()
a

Hb:{i

Complete residuated lattices on [0, 1] given by (3), (4), and
(5) are called standard Lukasiewicz, Godel, Goguen (product)
algebras, respectively. The class of complete residuated lattices
include finite structures as well. For instance, one can put

otherwise.

L:{a0:07a1,...,an:1}g[071]7 (6)
where ag < --- < a,, and with ® and — given by

Gk @ a4 = Gmax(k+1—n,0)> (N

Ak — Ap = Amin(n—k+1,n)- (3

Such an L is called a finite Lukasiewicz chain. If in addition
{ag,-...,a,} C [0,1] are equidistant, in which case (7) and
(8) are restrictions of the operations from (3), then L is called
an equidistant Fukasiewicz chain. For instance,

L3 = {07 057 1}7
L4 = {07 %7 %7 1}7

Ls = {0,0.25,0.5,0.75,1}, ...

equipped with operations defined by (7) and (8) are equidistant
Lukasiewicz chains. Another class of complete residuated
lattices defined on finite subsets of [0,1] is the class of finite
Godel chains, where subsets of L C [0,1] are equipped
with restrictions of Godel operations (4) on [0,1] to L. A
special case of a complete residuated lattice is the two-
element Boolean algebra ({0,1}, A, V, ®, —, 0, 1), denoted by
2, which is the structure of truth degrees of the classical logic.
That is, the operations A, V,®, — of 2 are the truth functions
(interpretations) of the corresponding logical connectives of
the classical logic.

With L taken as a structure of truth degrees, we use the
following notions: an L-set (fuzzy set) A in universe U is a
mapping A: U — L, A(u) being interpreted as “the degree to
which u belongs to A”. Let LY denote the collection of all L-
sets in U. Operations with L-sets are defined componentwise.
For instance, the intersection of L-sets A, B € LV is an L-
set AN B in U such that (AN B)(u) = A(u) A B(u) for
each u € U, etc. Binary L-relations (binary fuzzy relations)
between X and Y can be thought of as L-sets in the universe
X x Y. That is, a binary L-relation I € LX*Y between a set
X and a set Y is a mapping assigning to each z € X and
each y € Y a truth degree I(x,y) € L (a degree to which
x and y are related by I). For any A, B € LY, we define a
similarity degree

A= B =\, (Au) < B(u)), 9)

which expresses a degree to which fuzzy sets A and B are
similar. In particular, we write A = B if A~ B =1. We
have A = B (ie., A~ B =1) iff A(u) = B(u) (u € U).

In the following we use well-known properties of residuated
lattices and fuzzy structures which can be found in mono-
graphs [2], [8]. Throughout the rest of the paper, L denotes
an arbitrary complete residuated lattice.

III. DISCRETIZATION IN FORMAL CONCEPT ANALYSIS
A. Introduction to FCA

We first present a brief account on formal concept analysis
of data with fuzzy attributes, see e.g. [6] and [2], [3]. The input
data to FCA consists of a data table describing a relationship
between objects and attributes. The output of FCA consists
of a hierarchically ordered collection of clusters. The clusters
are called formal concepts and can be seen as natural concepts
well-understandable and interpretable by humans. A data table
with fuzzy attributes can be represented by a triplet (X, Y, I),
called an L-context, where X and Y are a non-empty sets
of objects (table rows) and attributes (table columns), and I :
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X xY — L is an L-relation with I(z,y) representing the
degree to which object z € X has attribute y € Y (table
entry corresponding to row x and column y). For A € L,
B € LY (ie. A is a fuzzy set of objects, B is a fuzzy set
of attributes), we define fuzzy sets A'7 € LY (fuzzy set of
attributes), B4 € LX (fuzzy set of objects) by

AT () = Npex (A@) = I(z,9)),
BY (@) = Ayey (B) — 1(z,3)).
We put
B(X,Y,I)={(A,B) e LXx LY | A" = B, B' = 4}

and define for (A1, By), (A2, B2) € B(X,Y, I) a partial order
S by <A1,B1> S <A2, Bg) iff Al g A2 (or, iff B2 Q Bl; both
ways are equivalent). (B(X,Y, I), <) is called a fuzzy concept
lattice associated to (X, Y, ). Elements (A, B) of B(X,Y,I)
are naturally interpreted as concepts (clusters) hidden in the
input data represented by I. Namely, A" = B and Bl =
A say that B is the collection of all attributes shared by all
objects from A, and A is the collection of all objects sharing all
attributes from B. Note that these conditions represent exactly
the definition of a concept as developed in the so-called Port-
Royal logic; A and B are called the extent and the intent of the
concept (A, B), respectively, and represent the collection of
all objects and all attributes covered by the particular concept.
Furthermore, < models the natural subconcept-superconcept
hierarchy—concept (A1, By) is a subconcept of (As, Bs) iff
each object from A; belongs to A, (dually for attributes).

We can see that formal concepts are just pairs (A, B) of
fuzzy sets satisfying constraint AT/ = B and B}/ = A. While
in crisp case, i.e. L = {0,1}, B(X,Y,I) is finite and can be
efficiently computed, it can be infinite in fuzzy setting, e.g.
with L = [0, 1] with Lukasiewicz operations.

For two fuzzy concept lattices B; = B(X,Y,I;) and
By = B(X,Y,I5), we define a degree By =gy B2 to which
B(X,Y,I;) and B(X,Y, I5) are similar via their extents by

By ~px By = (/\(,41,131>e31 Vaz,)e8, (A1 Az)) A
A </\(A2,Bz)682 Via,,Byes, (A1 = A2)> :

In an analogous way, one can define a degree By ~py Ba to
which B(X,Y, I) and B(X,Y, I5) are similar via their intents.

B. Replacing infinite structures of truth degrees by finite scales

Suppose Ly = (L1, A, V,®,—,0,1) is a complete residu-
ated lattice and Lo C L;. If Lo is a nonempty subuniverse
of Lo, ie., if Ly is nonempty and it is closed under all
operations from L, then Ly equipped with restriction of the
operations from L; is a complete residuated lattice which is
a subalgebra of L;. In such a case, we denote the subalgebra
by La. The new structure Lo can be seen as an approximation
of the original structure of truth degrees L;. For example,
an equidistant five-element Lukasiewicz chain (see Section II)
can be seen as an approximation of the standard Lukasiewicz
algebra defined on the real unit interval. Finite substructures

seem to be good candidates for replacing infinite structures of
truth degrees. One issue connected with moving from infinite
structures to finite ones is our ability to estimate quality of
approximation of the infinite structure by the finite one. There-
fore, for a complete residuated lattice L; and its subalgebra
Lo, we introduce the following degree of approximation:

appr(Ll, L2) = /\aEL1 VbeLz (a A b)

Using standard rules of fuzzy logic, one can see that formula
(10) represents a degree to which it is true that “for each truth
degree a from L; there is a truth degree b in Lo which is
equivalent to a”. Thus, appr(Li,Ls) can be understood as a
degree to which Ly is a faithful approximation of L;.

(10)

Example 1: Consider the standard Lukasiewicz algebra (de-
note it by L;) and its equidistant substructure with Lo =
{0,0.25,0.5,0.75,1}. Then appr(Ly,L2) = 0.75. More gen-
erally, for

Ly={0=2% 1", (11)

one can see that appr(Lq,Lo) =1 — %

Consider now a complete residuated lattice L; and an L;-
context (X, Y, I1). If we choose a finite substructure Lo of L,
we might consider transforming (X,Y, I} into an Ly-context
(X,Y, I5) so that the formal concepts present in (X,Y, I5)
are good approximations of the formal concepts presented in
(X,Y, I). We can think of B(X,Y, I;) as the original solution
set which may be infinite and B(X,Y, I1) as its finite approx-
imation. The first step in the process is to find a suitable Lo-
context (X, Y, I1). To achieve this goal, we define a mapping
assigning to each truth degree from L, its approximation in
L. For simplicity, we restrict ourselves to cases where both
L; and Ly are linearly ordered and Lo is finite only. This
is sufficient for the goal of approximating solution sets over
[0,1] by solutions sets over finite subsets of [0, 1].

Define disc(L1, L2): L1 — Lo as a mapping satisfying

(disc(L1, L2))(a) =b iff a<b=V,,, (a<c). (12)

Since L, is a finite chain, there is always at least one mapping
satisfying (12). Note that disc(Lq, L) is not given uniquely
in general. The mapping satisfying (12) will be called a
discretization function. For a fuzzy set A € LY we define
a fuzzy set (disc(Li,L2))(A) € LY by a componentwise
application of disc(L, L) as follows:

((disc(L1, L2))(A)) (u) = (disc(Ly, L)) (A(u)).

The definition (13) can also be introduced for binary fuzzy
relations A € LY*V.

13)

Now, given (X,Y,I;) where I; : X x Y — L; we can
consider Iy: X XY — Ls which equals to (disc(Ly, L2))(I1).
Hence, I, is a discretization of I; which is induced by
mapping disc(L1, Lz), see (12) and (13).

Example 2: Let Ly be the finite Lukasiewicz chain and
consider an L;-context which is given by the table
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I Y1 Y2 Y3

r1 | 0.00 0.27 0.52
ro | 0.56 1.00 0.68
rs | 0.34  0.73 1.00

Furthermore, consider Ly = {0,0.25,0.5,0.75,1} and a
discretization function disc(L1, Lo) defined by

0 ifael0,0.125),

0.25 if a € [0.125,0.375),
(disc(L1, Lo))(a) = { 0.5 if a € [0.375,0.625),
0.75 if a € [0.625,0.875),

1 ifae0.8751]

Then, the induced Lo-context I, =
be the following:

(diSC(Ll N Lg))(ll) will

L | wn Y2 Y3

z; | 0.00 0.25 0.50
zo | 0.50 1.00 0.75
z3 | 0.25 0.75 1.00

Intuitively, if the discretization of the context looks similar
to the original context (i.e., the truth degrees contained in the
new context are similar to the corresponding degrees from the
original table), then the two contexts should induce similar
concepts. This is indeed so, as we are going to show in the
sequel.

The following assertion says that every fuzzy set is similar
to its discretization at least to a degree given by (10).

Lemma 1: Let Ly and Lo be linear complete residuated
lattices such that Lo is a finite substructure of L;. Then, for
each A; € LY, we have:

appr(Ly,Lo) < Ay ~ (disc(L1, Lo))(A1). (14)

Proof: We show that for each u € U,
appr(Liy, Lg) < Ay (u) < ((disc(L1, Ly)) (A1) (w)-
Using (10), (12) and (13), we get

appr(Li1, Lz) < V.ep, (Ai(u) < ¢) =
= Ai(u) < ((disc(L1, L2))(A1(u)) =
= A1(u) < ((dise(L1, L2))(A1))(u).

which finishes the proof. [ ]

The following assertion shows that the derivation operators
LT used in discretized contexts with discretized fuzzy sets
of objects or attributes yield similar results as the original
operators in the original contexts. The similarity of results is
bounded from below by the degree of the approximation of
the original structure of truth degrees by the finite one.

Lemma 2: Let Ly and Lo be linear complete residuated
lattices such that Lo is a finite substructure of L. Moreover,
let (X,Y, I) be an Ly -context and (X, Y, I5) be an Ly-context

such that Iy = (disc(L1, L2))(11). Then, for each A; € Lf,
By € LY, we have

appr(L1, Lo)? < A" ~ (dise(Ly, L)) (A1) 2,
appr(Ly, Ly)? < BY" ~ (disc(L1, L2))(B1) 2,

(15)
(16)
where appr(Ly, Lo)? denotes appr(Ly, Ly) ® appr(Ly, Ly).

Proof: Due to the limited scope of this paper, we present
only a sketch of the proof. The full version of the proof is
postponed to the full version of the paper.

We prove only (15) since the proof of (16) is symmetrical.
Denote (disc(Ly, L2))(A1) by As. Using adjointness and
properties of residuated lattices, one can show that (15) is
true iff for each x € X and y € Y, the following inequalities
are satisfied:

As(x) ® AL (y) @ appr(Li, Lo)? < Lr(z, y),

A (x) ® AY2 (y) @ appr(Ly, Lo)? < I (2, y).

17
(18)
In order to prove (17), observe that

As(2) ® A} (y) ® appr(Ly, Ly)? <
< As(2) ® (A1(z) — Ii(z,y)) ® appr(Ly, L)

Using Lemma 1, we get
appr(Ly, L2) < Ay (z) — Ai(z),
appr(leLQ) S Il (1'7 U) - 12(1'7 U)a

i.e. by adjointness,

Az (r) ® appr(Ly, Lg)

A
I (z,y) ® appr(L, La) < I

< Ay(),
< Ix(zy

),

from which we get

As(x) ® (A1 (2) — I (2,y)) ® appr(Ly, Ly)? <
< Ai(2) © (Ar(z) = Lz, y)) @ appr(Ly, L) <
<Ii(z,y) ®appr(L1, Lo) < Ix(z,y),
which proves (17); the proof of (18) is symmetrical. [ ]

The following theorem shows to what degree the concepts
present in the discretized data are similar to the concepts
present in the original data.

Theorem 1: Let L; and Ly be linear complete residuated
lattices such that Lo is a finite substructure of L. Moreover,
let (X,Y, I) be an Ly-context and (X, Y, I5) be an Ly-context
such that I = (disc(Lq, L2))(I1). Then,

appr(Li1,Lo)? < B(X,Y, 1) ~p« B(X,Y, L),
appr(L1,Ly)? < B(X,Y, 1) ~m B(X, Y, I).

19)
(20

Proof: We present a sketch of the proof only. We focus
on proving (19) because (20) will then be a consequence of

results from [1]. Denote by E; and Ej the sets of all extents of
B(X,Y,I;) and B(X,Y, I5), respectively. It suffices to check

appr(Ly, Lg)? < Narer, Vayep, A1 = Az, 21
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and
appr(Ly, Ly)* < Naser, Va,en, 41 = As. (22)
The inequality (21) is true iff, for each A; € E,
appr(Ly, L2)2 < \/A2€E2 Al = As. (23)

Using Lemma 2, for Ay = ((disc(Ly, Ly)) (AN ))m, we get
appr(Li, Lo)” < A" & ((dise(L1, L2))(4))) ™,

which proves (23) because A; = AII‘“’ and Ay € Ey, ie.
the inequality (21) is true.

We now prove (22) by showing that for each Ay € Fj
there is A; € FE; such that appr(L;,Lo)? < A; =~ A,. Take
Ay € E; and put A; = A;bl’l. Lemma 2 yields

appr(Ly, Lp)? < Ay & ((disc(Ly, Ly))(A4'2)) 2.

Observe that for each a € Lo, we have (disc(L1, L2))(a% =a.
Therefore, (disc(L1, L2))(A;I2) = Al™ Since 4, = A212“2,
we get appr(L;,L2)? < A ~ A;Zu2 = A ~ As;. In
addition to that, A; € Ey, showing that (22) is true. [ |

Remark 1: Let us see what the foregoing results say. Tech-
nically, they provide estimations of similarity degrees on
the right hand side in terms of the degree appr(L;,Ls) of
approximation of L; by Ls. For instance, Theorem 1 says
that when we use Lo instead of Ly and transform (X, Y, )
to (X,Y, I,), then the degree

B(X7 Y, [1) Ext B(X, Y, 12)

to which B(X,Y,I;) is similar to B(X,Y,Is) is at least
appr(L1,Lo)2. Two aspects of a result of this type need to
be mentioned. First, computing the estimation appr(Ly, Lo)?
is easy. When devising Lo, computing the estimation
appr(L1,L2)? enables us to see how well B(X,Y,I;) is
approximated by B(X,Y, I5). Second, suppose we want to see
what kind of approximation we need to use in order to have
B(X,Y,I) ~gx B(X,Y, I5) at least as high as a prescribed
level a of similarity. Then the result tells us that we need to
choose Lo such that appr(Li, L2)? > a, i.e. we know how
fine the discretization Lo of L; needs to be.

Example 3: If L; is the standard Lukasiewicz algebra and
L, is its equidistant substructure with Lo being (11) then in
order to approximate the original concepts (computed using
L) at least to degree 0 < a < 1, we need to take Lo so that

2
n>—-——-:-,
~ a-—-1
e.g., for a = 0.9, we must take n > 20, i.e. Ly must contain
21 truth degrees to achieve the desired logical precision.

Remark 2: Using a finite scale instead of the infinite one is
beneficial not only from the computational point of view. The
discretization of structures of truth degrees can also be seen as
a way of reducing the size of concept lattices. Concept lattices
generated from contexts using t-norm based structures of

212000 o
5 ‘
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2 .\.
z 6000 3
@
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Se
2000 j
| [ [ [ [
20 40 60 80 100

number of truth degrees

Fig. 1. Dependency between the size of the discrete scale of truth degrees
and the number of extracted concepts

truth degrees are usually too large or even infinite. Therefore,
there is an effort to reduce the generated concepts lattices
in that they contain just some (interesting) concepts (see,
e.g., [4], [5]). Concept lattices generated using large scales
of truth degrees often contain a large number of concepts
which are similar to high degrees so that they are virtually
indistinguishable for users. A reasonable choice of a finite
scale of truth degrees can reduce the vast amount of concepts
to a few representatives only. This is illustrated by the next
example.

Example 4: Let Ly be the finite Fukasiewicz chain and
consider again the L;-context

L | w»n Y2 Y3

z1 | 0.00 0.27 0.52
ro | 0.56 1.00 0.68
r3 | 0.34 0.73 1.00

If we take Ly = {g55/0 < n < 100} equipped with
Lukasiewicz operations, then I; = (disc(Ly, L2))([1), i.e. the
discretized version of Iy, will coincide with I; itself. The
concept lattice generated using Lo contains 13415 concepts
which can be seen as not natural because the data table
contains just three objects and three attributes. With smaller
equidistant scales, we obtain smaller concept lattices generated
from the data. The situation for I; and its discretizations using
2 up to 101 truth degrees is depicted in Fig. 1.

IV. GENERAL APPROACH AND FURTHER ISSUES

The present approach, which we illustrated on the case
of formal concept analysis of data with fuzzy attributes,
can be obviously generalized to other situations. A general
framework, to which we will generalize our results in future
work, is that of a predicate fuzzy logic with the assumption
that our constraints are expressed by first-order formulas. Our
present example and other examples then become a particular
case of this general framework.

Moreover, the present idea of approximating a large (pos-
sibly infinite) scale L of truth degrees by a smaller set K
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leads to related problems such as the one we are now going
to outline. Suppose A : X — L is a fuzzy set taking values
in L such that M = {A(z) |z € X} is the set of all degrees
“used by A”. One might wish to replace A by a different fuzzy
set B which approximates A well and “uses” as small a set
K of truth degrees as possible. Denote K = {B(z) |z € X}.
Then, given a similarity threshold e, our problem is to find B
with

appr(M, K) > e. 24)

such that K is minimal in terms of the number of its elements.
Here, appr(M, K) is defined as earlier in our paper, see (10).
A feasible approach to solve this problem is the following.
Denote by ~. the tolerance on L defined by

a~eb iff a—=b>e®e

and for any maximal block B C L of ~, set
¢(B) =e— AB.
One can see that A\ B € B. Finally, for any ¢ € L set
B(c)={a€eL|e<a+< c}

Then, one can show that for any maximal block B C L of
~e it holds B = B(c(B)), i.e. elements of maximal block
B can be approximated by ¢(B) with precision given by the
threshold e. Moreover, one can prove the following theorem
(its proof will be presented in the full version of our paper):

Theorem 2: Let Q@ C L/~. be a set of maximal
blocks of the tolerance ~. such that M C [JQ and
K = {c(B) | B € Q}. Then (24) is satisfied. Conversely, if
K C L satisfies (24) and for any a € K, B(a) is a maximal
block of ~, then there is a covering  C L/~, of M such
that K = {¢(B) | B € Q}.

The theorem tells how to find set /& in terms of maximal
blocks of of ~. and shows universality of such approach.
Moreover, an algorithm can be devised which finds a required
K for a given M. Details of the just described method will
be presented in our next paper.
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Central points and approximation in residuated lattices
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Abstract

Given a subset B of a complete
residuated lattice, what are its
points which are reasonably close
to any point of B? What are the
best such points? In this paper, we
seek to answer these questions pro-
vided closeness is assessed by means
of biresiduum, i.e. the truth func-
tion of equivalence in fuzzy logic. In
addition, we present two algorithms
which output, for a given input set
M of points in a residuated lattice,
another set K which approximates
M to a desired degree. We prove
that the algorithms are optimal in
that the set K is minimal in terms
of the number of its elements. More-
over, we show that the elements of
any set K’ with such property are
bounded from below and from above
by the elements produced by the two
algorithms.

Keywords: Fuzzy Logic, Approxi-
mation, Residuated Lattice.

1 Motivation and preliminaries

Suppose there is a collection of metal poles
of different lengths with the longest pole hav-
ing (normalized) length 1. Suppose a person
sees a picture of two poles from that collec-
tion and is asked to assess their similarity, i.e.
the person is asked to tell a degree p; ~ po
to which the poles are similar. p; =~ py = 0

Michal Krupka
Palacky University
Olomouc, Czech Republic
e-mail: michal krupka@upol.cz

and p; =~ pg = 1 indicate that the poles are
not similar at all and that the poles are in-
distinguishable, respectively. Since the poles
are narrow, the person assesses their similar-
ity based solely on their lengths. The picture
does not show a scale, i.e. the person does
not know the actual lengths of the poles. An
obvious way to asses the similarity s of poles
p1 and py of lengths I(p1) and I(p2) is to put

l(p1) l(p2)
l(p2)’ l(pl)) IS

i.e. to make the similarity judgment based
on the ratio of the lengths. Namely, the ra-
tio does not depend on the actual lengths, i.e.

p1 ~ p2 = min (2%3, 2;833) for any ¢ > 0,
so it can be assessed even when the person
does not know the actual magnification coef-
ficient ¢ > 0, i.e. does not know the scale
for the picture. Given poles p; and py with
lengths I(p1) and I(p2), what is the length of
the pole in the middle? That is, what is the

length of the “central pole” p for which

p1L R p2 = min(

p=p1L=p=p2,

i.e. for which the similarity to p; equals the
similarity to p2? An easy verification shows
that the central pole p has length

I(p) = VIp1) - VIp2)- (2)

Suppose now the person knows the scale, i.e.
knows the lengths I(p1) and [(p2). Then there
is another, perhaps more natural, way to as-
sess the similarity. Namely, one can put

p1~pe =1—|l(p1) —Up2)], (3)

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 94-100
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i.e. the similarity is proportional to the dis-
tance of the normalized lengths of p; and
po. If such measure of similarity is used, the
length of the central pole p is

l(p1) + Up2)
i(p) = AP, (@
Obviously, given a set B = {pi1,...,pn} of
poles, the length of the optimal central pole

for B is

l(p) = \/miinl(pi) : \/m?Xl(pi)

for similarity given by (1) and

min; {(p;) + max; [(p;
) = T l00) + sl

for similarity given by (3).

In this paper, we present theorems and algo-
rithms motivated by the above types of prob-
lems. The first hint to a general framework
for this kind of problems is the observation
that in (1),

p1 = p2 =1(p1) < l(p2) (5)

with < being the biresiduum corresponding
to product t-norm and that in (2),

l(p1) < U(p2) (6)

with m = min{l(p1),(p2)}, ® denoting the
product t-norm and denoting its square
root [4]. Likewise, (5) and (6) become (3)
and (4) if < and ® denote the Lukasiewicz
biresiduum and t-norm.  Henceforth, we
consider the framework of left-continuous t-
norms and their residua. In fact, we consider
a more general framework of complete residu-
ated lattices [6]. Recall that a complete resid-
uated lattice is an algebra L = (L, A, V, ®, —
,0,1) such that (L, A, V,0, 1) is a complete lat-
tice, (L,®,1) is a commutative monoid, and
® and — satisfy so-called adjointness condi-
tion, i.e. a ® b < cif and only if a < b — c.
Residuated lattices are the main structures of
truth degrees used in fuzzy logic [2, 3]. We
assume familiarity with examples and basic
properties of residuated lattices.

l(p)=m®

Furthermore, we assume familiarity with ba-
sic concepts from tolerance and equivalence
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relations. Recall that a tolerance relation T'
on a set U is a reflexive and symmetric rela-
tion on U. An equivalence on U is a toler-
ance which is, moreover, transitive. A block
of a tolerance T is a subset B of U for which
Bx BCT,ie uTwv for every u,v € B. A
maximal block of T" is a block B of T" which
is maximal with respect to set inclusion, i.e.
such that if B € B’ then B’ x B' ¢ T. A
collection of maximal tolerance blocks of T'
is denoted by U/T. U/T forms a covering
of U, i.e. every maximal block is nonempty
and the union of all blocks yields U. A class
of a tolerance T given by u € U is the set
[ulr ={v € U|uTv}. If T is an equivalence
relation, then maximal blocks of T as well as
classes of T' are just equivalence classes of T'.

Given a complete residuated lattice L, denote
by =~ the tolerance on L defined by

ameb iff a—b>e

and put
a. = e a,
a® =e — a,
[a]e = [aev (ae)e]'

Note that [p,q] denotes the interval {z €
L|p<uz<gq}CL. It can be easily verified
that ~. a compatible tolerance relation on the
complete lattice (L, <). As a result, the fol-
lowing theorem follows directly from [7]:

Theorem 1 The factor set L/~ is equal to
the set {[a]. | a € L}.

2 Maximal blocks and central sets

Let B C L be a set. We set

Ce(B):
={ceL|forbeB,c—b>e}. (7)

Ce(B) is called the e-central set of B (or sim-
ply a central set of B), its elements are called

e-central points of B (or simply central points
of B).

L)emma 1 ce Ce(B) iff(c— ANB)A(V B —
c) > e.
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Proof. Follows easily from ¢ — (N\,cpb) =

Neep(c — b) and (\/,cpb) — ¢ = Nycp(b —
c). O

The following theorem shows how to compute
the central set C.(B) of a subset B C L.

Theorem 2 For any B C L, C.(B) is equal
to [e® \/B,e — A\B].

Proof. By adjointness, e < ¢ — A B is equiv-
alent toc < e - ABande < \/B — cis
equivalent to e®\/ B < ¢. Thus the assertion
follows from Lemma, 1. d

For c € L set
Be(c)={beL|c—b>e} (8)

Be(c) is called the closed ball with center c
and radius e. Since ¢ € Be(c), Be(c) is always
nonempty. A closed ball Be(c) is called maz-
imal if there is no ¢ # ¢ such that B.(c) C
B(¢).

Note that a closed ball B.(c) is exactly the
class of tolerance ~, determined by c.

Example 1 In the Lukasiewicz structure,
Be(c) is just the interval [c—(1—e), c+(1—e€)]N
[0,1]. Hence the closed ball By 5(0) = [0,0.5]
is not maximal: By5(0) C By5(0.5) = [0, 1].

The following result is a simple consequence
of the above definitions. Note, however, that
it does not say that the central set C(B) is
not empty.

Lemma 2 For any subset B C L and ¢ €
C.(B) it holds B C Be(c).

Proof. Let b € B. Using (7), we get ¢ < b >
e, and from (8), we get b € Be(c). O

The following theorem provides an easy way
to compute any closed ball with given center
and radius.

Theorem 3 For any ¢ € L, the closed ball
Be(c) is equal to the interval [e ® c,e — ¢].

Proof. The condition b < ¢ > e from the
definition of closed ball has two parts: b —

¢ > eand ¢c — b > e. By adjointness, the first
part is equivalent to b < e — ¢, the second to
b>e®ec. O

Corollary 1 For any c € L, ¢ € Ce(B¢(c)).

Proof. From Theorem 2 and Theorem 3 we
obtain Ce(Be(c)) = [e® (e — ¢),e — (e ® ¢)]
and from adjointness, e ® (e - ¢) <c<e —
(e®c). O

Now we turn our attention to the relationship
between closed balls with radius e and blocks
of the tolerance ~,2 (where e? = e ® ¢) and
show that maximal closed balls with radius
e coincide with maximal blocks of this toler-
ance.

Lemma 3 For any ¢ € L, B(c) is a block of

~
~

e2-
Proof. From Theorem 3, e ® ¢ and e — ¢ are
the least and the greatest elements of Be(c),
respectively. From Theorem 1, the element
e®e® (e — c) is the least element of a max-
imal block of ~,2 containing e — c¢. Since
e®e® (e —c) <e®ec, Bec) is contained in
this maximal block, which proves the lemma.
O

Lemma 4 For any subset B C L, the central
set Ce(B) is nonempty if and only if B is a
block of the tolerance = 2.

Proof. According to Theorem 2, the non-
emptiness of C¢(B) is equivalent to the condi-
tion e ® \/ B < e — A B, which is, according
to adjointness, equivalent to e®e < \/ B —
/A B which is equivalent to the fact that B is
a block of ~2. g

Now we put together results of the previous
lemmas.

Theorem 4 FEvery mazimal closed ball Be(c)
is a mazximal block of ~.2. Conversely, if
B C L is a mazimal block of ~.2 then the
central set Ce(B) 1is nonempty and for any
¢ € C¢(B) the closed ball Be(c) is mazximal
and equal to B.
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Proof. According to Lemma 3, a maximal ball
Bc(c) is a block of ~,2. It is therefore con-
tained in a maximal block B. From Lemma
4 it follows that this maximal block has at
least one central point ¢ € B. Now, Lemma
2 says that the closed ball B.(¢/) contains
B. Put together, these considerations give
Be(c) € B C B(c’) and from the maximality
of Be(c) we obtain B.(c) = B.

To prove the converse, we first use Lemma 4
again to obtain C.(B) # (). Now, any closed
ball containing B.(c) should be equal to B,
because it is a block of ~,2 itself (Lemma 3).
Any other closed ball containing Be(c) should
be also equal to it by the same reason (Lemma
3). O

3 Optimal central points

So far, we investigated maximal sets which
have nonempty sets of e-central points. Now
we turn to another problem: find a maximal e
such that the set of e-central points of a given
set is nonempty.

We say that e is an admissible radius of set
B if C.(B) # 0. From Lemma 2 it follows
that if e is an admissible radius of B, then
B C Bc(c) for any ¢ € C¢(B). Lemma 1 says
that for any such c,

e<(e—= AB)AN(VB—cq). 9)

An optimal central point for B C L is an ele-
ment ¢ € L such that for every m:

Niep(z = m) < N\ cp(z < o).

Since for any m we have A _p(z < m) =
(m — AB)A (VB — m) (see, for example,
the proof of Lemma 1), ¢ is an optimal central
point iff for every m:

(m = AB)A(VB—m)<
(c—= AB)AN (VB — ¢ (10)
Theorem 5 1. For any optimal central point
cofB,e=(c— ANB)AN (VB — c) is the
largest admissible radius of B.
2. If e 1is the largest admissible radius of B

then the set of optimal central points of B is
nonempty and is equal to Ce(B).
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Proof. 1. By Lemma 1, ¢ € C.(B), which
also means that e is an admissible radius of
B. Now the assertion follows from (9) and
(10).

2. The fact that C.(B) is nonempty follows
directly from definition of admissible radius.
Now, for any m, (m — AB) A (VB — m)
is an admissible radius, hence it is less than
or equal to e. On the other hand, for any
c € Ce(B) we have B C Bc(c), which means
(c = ANB)A (VB — ¢) > e. Put together,
(10) is satisfied for any m € L, ¢ € C(B). O

Lemma 5 Letd= \B — \/ B. Then
1. e is an admissible radius of B iff e® e < d.

2. Forany z € L, e = z A (2 — d) is an
admissible radius of B.

3. e is an admissible radius of B iff e = e A

(e —d).

Proof. 1. e® e < d if and only if B is a block
of ~z.2, which is equivalent to the requirement
that B is a subset of some closed ball Be(c)

(Theorem 4). Hence, c is an e-central point
of B.

2. Wehavee®e=(zA(z—d)@(zA(z —
d)) < z® (2 — d) < d and the result follows
from 1.

3. From 1. and adjointness we obtain that e
is an admissible radius of B iff ¢ < e — d,
which is equivalent to e = e A (e — d). O

Corollary 2 The set
{zA(z=(AB—=VDB)) |zeL} (1)
is the set of all admissible radii of B.

Proof. Follows from Lemma 5, parts 2. and
3. O

Theorem 6 (optimal central points) Set
B has optimal central points if and only if the
set P from Corollary 2 has a largest element.
This element is equal to the corresponding
largest admissible radius e.

Proof. Follows directly from Corollary 2 and
Theorem 5. ]
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Now we derive a simple consequence of the
previous results for the case of residuated lat-
tices with square roots. We will use the con-
cept of a square root introduced by Hohle [4].
A complete residuated lattice L has square
roots if there is a function Ve L — L satisfy-
ing

Va®Va=a, (12)
bob<a implies b<+/a, (13)
for every a,b € L.

Remark 1 Lukasiewicz, product, and Goédel
algebras on [0, 1] have sqaure roots. They are

given by
a+1

Va=—

va = ordinary number-theoretic square

for Lukasiewicz,

root of a for product,
Va=a for Godel.

Theorem 7 If L has square roots then any
subset B C L has optimal central points. For
the corresponding largest admissible radius e

it holds
e=+/A\B—\B. (14)

Proof. According to Lemma 5, part 1. and
(12), e is the largest admissible radius of B.
The rest follows from Theorem 5, part 1. [

4 Optimal algorithms for
approximating sets of truth
degrees

We now consider the following type of prob-
lems. Given a set M of truth degrees, find a
reasonably small set K of truth degrees which
approximates M well. We provide a precise
statement below. Due to limited scope, we
omit proofs in this section.

Note first that such problem naturally arises
in the following scenario: Let A: U — L be a
fuzzy set in universe U with M = {A(u) |u €
U} being the set of truth degrees “used by
A”. Find a fuzzy set B : U — L which ap-
proximates A well and for which, in addition,
the set K = {B(u)|u € U} of truth degrees

“used by B” is small. In general terms, the
advantage of B over A is its simplicity. As
an example, B is easier to interpret. Due to
the well-known Miller’s 7+ 2 phenomenon [5],
people have difficulty to assign and interpret
consistently more than 7+ 2 values of a given
variable. So if A represents degrees to which
objects (such as products) meet certain cri-
teria, it might be better to present B as an
output instead of A.

We consider the following general definition.

A degree appr(M, K) to which M C L is ap-
proximated by K C L is defined by

appr(M, K) = /\aeM VbeK(a «b). (15

appr(M, K) can be seen as a truth degree of
“for every a € M there is b € K such that a
and b are similar (close)”. Hence, appr(M, K)
can be understood as a natural degree of ap-
proximation. Among the basic properties of

appr(-, -) are
1. appr(M,K) =1 for M C K,
2. K1 C K implies
appr(M7 Kl) < a,ppI'(M, KQ)

We now present two problems.

Problem 1 Given (finite) M C L and a thresh-
old e € L, find (finite) K such that

1. K approximates M to degree at least e,
i.e.

appr(M, K) > e, (16)

2. there is no K’ with |K’| < |K]| for which
appr(M, K') > e, i.e. K is a least set in
terms of the number of its elements which
satisfies (16).

Problem 2 Given (finite) M C L and a thresh-
old e € L, find (finite) K satisfying 1. and 2.
of Problem 1, and

3. For any K’ with |K'| = | K],
appr(M, K) > appr(M, K'), (17)

i.e. among the sets with |K| elements, K
provides the best approximation of M.

Proceedings of IPMU'08



In the rest of this section, we assume that
the complete residuated lattice L is linearly
ordered, i.e. a < b or b < a for every a,b €
L. The following theorem provides a universal
description of sets K satisfying (16).

Theorem 8 Let L be linearly ordered. 1. Let
Q C 2% be a covering of M and ¢: Q — L a
mapping such that for any B € Q, p(B) €
Ce(B). Then Q) consists of blocks of the toler-
ance =2 and for K = ¢(Q), (16) is satisfied.

2. If K C L satisfies (16) then Q =
{B.(c) | c € K} C2F is a set of blocks of the
tolerance =2 which forms a covering of M.
Moreover ¢: Q — L defined by ¢(B(c)) = ¢
satisfies (B) € Ce(B).

Proof. Omitted due to lack of space. O

According to Theorem 2, C.(B) is equal to
e ® \V/B,e — AB]. Hence, we can con-
struct a mapping ¢ from the first part of the
above theorem by setting ¢(B) to any ele-
ment of this interval (which is nonempty ac-
cording to Lemma 4). Obviously, in order for
K to provide a good approximation degree
appr(M, K), the best choice is to let ¢(B) be
an optimal central point of B.

Example 2 Let L = [0, 1]? with Lukasiewicz
structure, M = L, e = (0.25,0.25). Then

K = {{0,0), (0.5,0), (1,0}, (0,0.5), (0, 1)}

satisfies (16). However, for a = (1, 1), we have
Viex @ < b= (1,1), but B.(a) N K = ) for
there isno b € K such that a < b > e. There-
fore, assertion 2. from Theorem 8 does not
hold.

We now present two algorithms which provide
solutions to Problem 1. The first algorithm
constructs K by “going up” in the set L of
truth degrees.

Algorithm 1

1: INPUT: M, e
2: OUTPUT: K satisfying 1.
of Problem 1

and 2.

3: K «— 0

Proceedings of IPMU'08

while M is not empty do
min «— min(M)
add e — min to K
remove from M every
element < (e®e) — min
endwhile
9: return K

~N O O

oo

The second algorithm constructs K by “going
down”.

Algorithm 2

1: INPUT: M, e
2: OQUTPUT: K satisfying 1.
of Problem 1

and 2.

3: K « 0

4: while M is not empty do

5: maz «— max(M)

6: add e® maz to K

7: remove from M every
element > e® e ® mazx

8: endwhile

9: return K

As the next theorem shows, the algorithms
stop and are correct, i.e. they produce a set
K of minimal size for which appr(M, K) > e.

Theorem 9 (termination, correctness)
1. Algorithms 1 and 2 terminate after at
most | M| steps. 2. Algorithms 1 and 2 are
correct.

Proof. Omitted due to lack of space. O

Note that Algorithms 1 and 2 work concep-
tually even for infinite sets M when replacing
inf(M) by min(M) and sup(M) by max(M)
in line 5.

Futhermore, the algorithms provide upper
and lower bound for every set K’ with the
minimal number of elements which approxi-
mate M to degree at least e.

Theorem 10 (bounds) Let the sets K* and
K produced by Algorithm 1 and Algorithm 2
consist of elements ki < --- < k% and k| <
- < kb, respectively. If K' consisting of

K, <--- <k, satisfies appr(M, K') > e, then

l / l /
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Proof. Omitted due to lack of space. O

The following example shows that not every
K' = {Ki,...,k],} for which k! < Kk < k¥
satisfies appr(M, K') > e.

Example 3 Consider standard Lukasiewicz
structure on L = [0,1], M = {0.5,0.7,0.8},
and e = 0.9. Then K' = {0.4,0.7} and
K" = {0.6,0.9}. Let K’ = {0.4,0.9}. Then
appr(M,K') =08 < 0.9 =e.

Although the set K produced by Algorithm
1 or Algorithm 2 is optimal in that it is one
of the smallest sets for which appr(M, K) >
e, there can be a set K’ of the same size,
i.e. |K'| = |K|, for which appr(M,K’) >
appr(M, K), i.e. K’ provides a better approx-
imation of M than K. From this point of
view, the output set K from Algorithm 1 and
Algorithm 2 can be improved. Namely, it is
easily seen from the description of Algorithm
1 and Algorithm 2 that the set

{Be(k)N M|k € K}

forms a partition of M, i.e. sets B.(k)NM for
k € K are pairwise disjoint and their union
is M. Now, in general, k£ is not an optimal
central point of B.(k) N M. Therefore, we
can improve K by replacing every k € K by
an optimal central point of B.(k) N M (or a
point which provides a better apprximation of
Be(k) N M than k). By Theorem 7, if L has
square roots, then any element from

[VABL(R) N M) @V (B.(k) N M),

AB.(k) 0 M) — N(B.(k) N M)

can be used to replace k. For instance, for
M = {0.5,0.7,0.8} and K = K' = {0.4,0.7}
from Example 3, By9(0.7) N M = {0.7,0.8}
and Bjg(0.4) N M = {0.5}. Hence, 0.4 can
be replaced by 0.5 (optimal central point of
{0.5}) and 0.7 can be replaced by 0.75 (op-
timal central point of {0.7,0.8}). As a re-
sult, we get a set K’ = {0.5,0.75} for which
appr(M, K') = 0.95 > 0.9 = appr(M, K), i.e.
K’ provides a better approximation of M than
K does.

Still, such improvement does not, in general,
satisfy condition 3. of Problem 2. That is,
replacement of points k in K by better points
k" which cover the same part of M, i.e. for
which Be(k) N M = B.(k') N M, does not re-
sult in the best approximating set with size
|K|. An algorithm which provides such set,
i.e. which provides a solution to Problem 3,
is the subject of our future research.
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Abstract

We discuss the problem of factorization of residuated lattices by similarity relations. As the main result, we introduce
a natural structure of residuated lattice on factorized residuated lattice. Some consequences are also discussed: the
problem of representatives and factor projections, sequential factorization, application to fuzzy sets, application to
factorization of concept lattices of data with fuzzy attributes.

Keywords: Fuzzy logic, Factorization, Residuated lattice, Similarity, Concept lattice

1 Introduction

Factorization is an important procedure for simplification of systems. The basic idea is to
reduce complexity of a system by putting together elements, considered as similar. In other
words, by factorizing-out small or unimportant differences between elements it is possible
to obtain smaller amount of data. This method is also called Simplification by abstraction.

Factorization of algebraic systems by congruence relations (i.e., compatible equivalence
relations) is well understood. Sometimes, however, the used relation is not transitive, i.e., it
is only reflexive and symmetric (a tolerance relation), but is compatible with the structure
of a system. This is usually the case when a relation is used for expressing similarity or
proximity of elements of a system. Tolerance relations have been studied in the context of
algebraic systems in many papers, see e.g. [6, 9].

In [7] and [10], factorization of lattices has been studied. The main result is that there can
be introduced a lattice structure on lattice factorized by compatible tolerance. Lattices can
serve as models of systems with hierarchically ordered elements. In this paper, we extend
these results to residuated lattices.

Residuated lattices are heavily used in fuzzy logic as algebraic structures of truth degrees
[8]. Roughly speaking, residuated lattice consists of truth degrees and is endowed with addi-
tional algebraic operations, generalizing classical logical connectives such as conjunction or
implication.

In this paper, we study the possibility of factorizing residuated lattices by compatible
tolerances (more precisely, by e-cuts of biresiduum, see beginning of Sec. 2.3), which are
used for measuring similarity of truth values in fuzzy logic. As the main result, we introduce
a structure of residuated lattice on the factor set and study its basic properties. We show
that our way is the only natural way of introducing a residuated lattice structure on the
factorized residuated lattice.

In this paper, we use results of [7, 10], who studied factorization of ordinary (non-
residuated) lattices (complete ones in [10]). Their main results, needed in this paper, are
summarized in Sec. 2.2. In Sec. 2.3, we recapitulate known consequences of this general
theory to residuated lattices, as shown for example in [2, 3]. Our main result is presented in
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206 Factorization of residuated lattices

Sec. 3.1 where we define a structure of residuated lattice on any residuated lattice factorized
by a cut of biresiduum.

Some consequences of the main result are given in the following sections. Section 3.2
deals with the problem of representatives and factor projections and contains examples
showing that the structure of residuated lattice on factorized residuated lattices, introduced
in this paper, is the only possible satisfying some natural requirements. In Section 3.3 we
prove a result on factorization of residuated lattices which themselves are constructed by
factorization of other residuated lattices.

In Sec. 4.1, we give a slight generalization of our results concerning factorization of the
set of all fuzzy subsets in a given universe. In Sec. 4.3 we show an application of our results
in the field of Formal Concept Analysis of data with fuzzy values of attributes. In the last
section we outline a possible approach to the problem of minimization of any fuzzy system
over a residuated lattice by means of factorization of the underlying residuated lattice.

Preliminary version of some results of this paper were previously published in Krupka M.
Factorization of residuated lattices with application to concept lattices, In: R.Trappl (ed.)
Cybernetics and Systems 2008, Austrian Society for Cybernetic Studies, Vienna (2008).

2 Preliminaries

In the following sections, we summarize basic known facts. Section 2.1 gives an overview of
the theory of complete residuated lattices. In Sec. 2.2 we outline basic results on factorization
of complete lattices by compatible tolerance relations, in Sec. 2.3 we give some consequences
of these results for the case of complete residuated lattices and cuts of biresiduum as com-
patible tolerances.

2.1 Residuated lattices

We start by recapitulation of basics of the theory of complete residuated lattices. For more
detailed review, we refer the reader to [2, 8].
A complete residuated lattice is defined as an algebra

L=(L,AV,® —,0,1) (1)
such that (L, A, V, 0, 1) is a complete lattice with the least element 0 and the greatest element
1; (L, ®, 1) is a commutative monoid (i.e. ® is commutative, associative, and a1 =1Q a=a
for each a € L); ® and — satisfy so-called adjointness property:

a®@b<c iff a<b—c (2)
for each a, b, c € L. Elements a of L are called truth degrees. ® and — are (truth functions
of) “fuzzy conjunction” and “fuzzy implication”.

A biresiduum of L is a binary operation <> defined by

a<b=(a—>b)A(b— a). (3)

It is a truth function of logical connective “fuzzy equivalence”.
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Example 1 A common choice of L is a structure with L = [0,1] (unit interval), A and Vv
being minimum and maximum, ® being a left-continuous t-norm with the corresponding
—. Three most important pairs of adjoint operations on the unit interval are:

a®b

a—b

max(a+b—1,0),

Lukasiewicz: .
min(1—a+b,1),

(4)

a®b = min(a,b),
Godel: y _ |1 ifasb, (5)
=0 =0 otherwise,

a®b = a-b,
if a<b, (6)
otherwise.

Goguen (product): ; { 1
a —> = é
a

Complete residuated lattices on [0,1] given by (4), (5), and (6) are called standard
Lukasiewicz, Godel, Goguen (product) algebras, respectively.

Example 2 The class of complete residuated lattices includes finite structures as well. For
instance, we can put

L={a=0,a,...,a,=1} C[0,1], (7)

where ay < --- < a, are equidistant and ® and — are restrictions of the operations from (4).
In this case, L is called an equidistant Lukasiewicz chain. For instance,

Lz =1{0,0.5,1},
Ly={0,4.3.1},

Ls =1{0,0.25,0.5,0.75, 1},

equipped with operations ® and — which are restrictions of Lukasiewicz operations (4) are
equidistant Lukasiewicz chains.

Example 3 A special case of a complete residuated lattice is the two-element Boolean algebra
({0,1}, A, V,®,—,0, 1), denoted by 2, which is the structure of truth degrees of the classical
logic. That is, the operations A, V,®, — of 2 are the truth functions (interpretations) of the
corresponding logical connectives of the classical logic.

2.2 Factorization by compatible tolerances

This section contains results derived from [7, 10]. We present main theorems without proofs.

A tolerance relation T on a nonempty set X is a binary relation which is reflexive and
symmetric. A block of T is any subset B C X such that for any z;, 22 € B it holds (z1, 1) € T.
A maximal block of T is a block which is maximal with respect to set inclusion, i.e., BC X
is a maximal block if and only if B is a block and for any other block B’ from B C B’ it
follows B = B’. The set of all maximal blocks of T is called the factor set of X by T and
denoted X/T. The system X/Y is a covering of X (it consists of nonempty sets and for
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any z € X there is B € X/Y containing z), but need not form a partition of X (elements
By, By € X/ T can overlap; in general BN By # ).

A compatible tolerance relation on a complete lattice L is a tolerance which preserves
suprema and infima, i.e., a tolerance ~ on L is compatible if from a; ~ b; for any je J
follows \/jeJ a;j ~ \/jeJ bj and /\jeJ aj ~ /\jeJ bj.

For a € L denote

a=\/{beL|arb}, an

[a‘]x = [a%ﬂ (a“)w]v [a]

NA{be L | a= b}, (8)
=[(a¥)~, a~] 9)

~

([a1, a2] denotes the interval {b € L | a1 < b < ag}). From the fact that ~ is a compatible
tolerance we immediately obtain

a€lals, a€lal” (10)
and, if we set b =\/[al~, ¢ = Alal”,
[bl~ =lal~, [c]” =[al™. (11)

The following theorem shows that maximal blocks of ~ are exactly sets [a]~ and [a]™.

Theorem 1 For a complete lattice L and compatible tolerance ~ on L it holds L/~ ={[a]~ | a €
Ly={[a]” | a € L}.

Ordering on the set L/~ is introduced using suprema of maximal blocks and can be
equivalently introduced using infima. For blocks B;, By € L/~ we set

By < By iff \/B1 5\/32. (12)

Theorem 2 The set L/~ together with the ordering < is a complete lattice.

If L is a complete lattice with the support set L then the complete lattice with the support
set L/~ and the ordering we have just introduced will be denoted by L/~. More formally,
using the operations A and V of infimum and supremum induced by the ordering <, we can
write L/~ = (L/~, A, V,0, 1).

Note that for any a € L it holds

\(BeL/~|acB), (13)
\/(BeL/~|acB). (14)

5
2
Il

ﬁ
2,
2

Il

The following theorem shows that suprema and infima in L/~ are closed with respect to
choices of representatives of maximal blocks.

Theorem 3 Let for any j € J it holds B; € L/~ and bj € Bj. Then \/,c;bj € \/;c; Bj and
/\jeJ bj € /\je]Bj'
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2.3 Factorization by cuts of biresiduum

Results in this section are derived from [2, 3], where a more general approach is presented,
namely sets of fixpoints of L-closure operators are considered in place of residuated lattice L.
The main theorem is given without proof.

Using the operation of biresiduum <> and a fixed element e € L we can define a binary
relation ~, on L by

ap ~e ap iff ag < ap>e. (15)

This relation is called the e-cut of biresiduum in L, “a; ~. as” being interpreted as “a; and
ap are similar to a degree greater than or equal to e”.

We introduce the following simplified notations: a, = a~,, a®=a"¢, [al. = [a]~_, [a]° =
[a]~¢. The factor lattice L/~ will be denoted by L/e.

We have the following simple result:

Theorem 4 For any a € L it holds

o = eQa, (16)
a® = e—a. (17)
Example 4 As it can be easily proved, in Lukasiewicz structure, maximal blocks of ~, are
closed intervals of length 1— e, in Goguen structure closed intervals of the form [ea, a] for
e # 0 and the interval [0, 1] for e =0. In Godel structure, maximal blocks of ~, are singletons
{a} for a < e and the interval [e, 1].

As a consequence, we obtain the following equalities, which hold for any maximal block
BeL/~.:

\/B = e—> A\B (18)
AB = ed\/B (19)
We shall use these two equalities frequently throughout the text.
Note the following equalities for the minimal and maximal elements 0,1 € L/e:
0 = [0,e—0] (20)
1 = [el] (21)

3 Factorization of residuated lattices

The following sections contain main results of this paper. In Sec. 3.1 we introduce a structure
of complete residuated lattice on the factor lattice L/e.

Section 3.2 deals with the problem of representatives and factor projections. This prob-
lem can be described briefly as follows. There are two standard requirements for algebraic
(and other) structures factorized by equivalence relations: operations on factor sets to be
independent on choices of representatives and factor projections to be morphisms of con-
sidered structures. In the case of algebras (algebraic systems with operations only), the two
requirements are equivalent (i.e. one is a reformulation of the other).
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Our case is more complicated in that our factor sets are not partitions of original sets
but their coverings only. As a consequence, the two mentioned requirements are generally
not fulfilled: operations of product and residuum on the factor lattice are not determined
by operations on the original lattice independently on the choice of representatives and
there are several (at least two) mappings which can be called factor projections. However,
Theorem 7 shows a weaker but still acceptable connection between products and residui of
blocks from L/e and their representatives, Theorem 8 shows a similar weaker property of
one of the possible factor projections. We also show in some examples that the structure of
residuated lattice on factorized residuated lattices, introduced here, is the only one, which
satisfies the weakened requirements on representatives and factor projections.

Having a structure of residuated lattice on L/e leads to a possibility of applying another
factorization. For example, we might want to compute several concept lattices from a given
data table, each with a lower degree of similarity than previous. In Sec. 3.3, we show that
double (and multiple) factorization can be achieved in a single step, by choosing an appro-
priate, easily computable threshold.

3.1 Structure of factor residuated lattice

In this section, we introduce operations of product and residuum on the complete lattice
L/e and prove their basic properties. As the main result, in Theorem 6 we show that these
operations define a structure of residuated lattice on the set L/e.

For By, By € L/e set

B®B = [\/31 ® \/Bz]e, (22)
Bi— B, = [\/B1 = \/Bg]e. (23)

In Lemma 1 and Theorem 5 we show basic properties of operations ® and — on L/e.
Theorem 5 shows alternative ways to define these operations.

Lemma 1 For any By, By € L/e we have

\/B1®/\32 = /\(31®B2)7 (24)
\/Bi—>\/B: = \/(Bi— B). (25)
ABi—> A\B: = \/(Bi— B). (26)

Proof. From (22) we have A\ (B1® By) = e®\/B1 ® \/ By, which is equal to \/ B; ® /\ Bo. This
proves (24).

In (25) we have \/B; = \/Bo =\/B1 — (e > A\B2) = (e®\/B1) > NBo=e— (/B —
ABa2), hence \/B; — \/ By is a supremum of some block (explicitly, it is the block [\/ B; —
A B219). From (23) it follows that the block is equal to B — Bs.

To prove (26) we have AB; - AB2=(e®\/B1) > ABa=\/B1 — (e > AB2)=\/B1 —>
\/Bs. m
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Theorem 5 For any By, By € L/e it holds

Bi®By =

[
Bi— By, = [/\B1—>/\Bg]e, (28)
[ e

B1—>BQ =

Proof. (27) follows directly from (11) and (24). (28) follows from (11), (26), and (23). To
prove (29) we first observe that e — (\/B; — AB2) = AB1 — /\ B2 and then use (28). MW

Now we introduce our main result.

Theorem 6 The tuple L/e=(L/e,A,V,®,—,0,1) is a complete residuated lattice.

Proof. We have to show that L/e together with the operation ® and element 1 is a commu-
tative monoid and that the operations ® and — form an adjoint couple.

The operation ® is obviously commutative and 1 = [e,1] € L/e is its unit element. For
associativity, we have from (24) that for any By, Be, Bs € L/e, AN(B1® B2)® B3) =\/ B1 ®
AB2®\ By = /A\(B; ®(B2® Bs)) and we can use Theorem 1.

To prove that (®, —) is an adjoint pair we show that B; — By is the greatest element of
the set K ={B3 | B1 ® By < Bs}. First, we have /\(Bl ® (B1 — BQ)) = /\B1 ®\/(Bl — BQ) =
AB1® (A B — A B2) < /\ By, from which it follows B; — By € K. Second, it remains to be
proved that for any Bs € K it holds By < By — By. We have \/ B> \/(B1®B3) >\/ Bi®\/ Bs
(the last inequality follows from (10)), from which it follows \/ B3 <\/ B = \/ Bo = \/(B; —
By). |

From (22) and (27) it follows that for any By, By € L/e it holds \/B; ® \/ By € B; ® B>
and \/B; ® A\B; € B ® By. The following example demonstrates that it is not possible to
introduce a product on L/e satisfying A\B; ® /\Bs € B ® Bs.

Example 5 Consider L = {0,0.5, 1} with the structure of equidistant Lukasiewicz chain, i.e.,
with 0.5®0.5 =0, and set e =0.5. We have L/e = {0,1}, where 0 ={0,0.5} and 1= {0.5, 1}.
Now suppose that for a binary operation X on L/e it holds AB; ® A\ Bz € Bi X By for any
By, By € L/e. Hence in the case of Bj = By =1 we obtain 0=0.500.5=A1® A1€1K1,
which leads to 1X1 =0 and to the conclusion that 1 is not a unit element of X.

3.2 Representatives, factor projections and uniqueness

As the following example demonstrates, in general case there is no structure of residuated
lattice (in contrast to ordinary lattice, [7]) on the factor set L/e where product and residuum
are independent on the choice of representatives of maximal blocks from L/e.

Example 6 Suppose that for blocks By, By, B3 € L/e from by € By and by € By it follows
b1 ® by € B3. Then, by Theorem 1, \/ B;, A B; € B; and \/ By, \ B2 € B2. Hence for a =
\/ B ®\/ By we obtain a € B3, and by (19), ABIQ ABo=e®e®\/Bi®\/Bs=e®e®ac
Bs,or AB3<e®e®a. Since e®\/ By = /\ B3 and a <\/ B3 then e® a < /\ B3 which implies
e®a < e® e® a. This is generally satisfied in so called Heyting algebras (where eQ a = e A a)
but not, for example, in Lukasiewicz and Goguen structure.
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Lemma 2 Let By, By € L/e, by € By, by € Bs.

1. by ® by € Bi® By if and only if by ® by > \/B1®/\B2
2. by > by € By —> By if and only if by — by <\/ By — \/ Bs.

Proof. 1. From (22) it follows b ® by < \/(B1 ® Ba). By (24), the condition b1 ® by > \/ B; ®
A\ Bs is equivalent to b1 ® by > A\ (B1 ® By) and the result follows from the fact that B; ® By
is an interval (Theorem 1).

2. Similarly, by (29) it always holds b — by > A(B; — Bs) and from (25) it follows that
the condition by — by <\/ B; — \/ B is equivalent to b — by < \/(B1 — Ba). [ ]

Theorem 7 Let B;,By e L/e, by € By, by € By. Then

\/Bi®b, € Bi®B, (30)
\/Bi—b e Bi— B, (31)
by~ /\B. € Bi— B. (32)

Proof. All three assertions are simple consequences of Lemma 2. In (32) we use the equality
\/ Bi = \/ Ba = A\ B — /\ Bz, which follows from (25) and (26). [ |

A mapping P: L — L/e is called a factor projection if for any a € L it holds a € P(a).
Factor projections P,, P¢ are defined by P.(a) =[al., P¢(a) =[a]¢. We have the following
result regarding projection P.:

Theorem 8 (1) P, is a homomorphism of structures (L, ®) and (L/e, ®).
(2) The structure introduced in Section 3.1 is a unique structure of residuated lattice on
L/e such that P, is a homomorphism of these structures.

Proof. (1) For b;,by € L we have A P.(by ® ba) = Alb1 ® bale = e ® by ® by while
N\ (Pe(b1) ® Pe(b2)) = A([b1]e®[b2]e) = VIbile® Alb2]le = (e = (e®b1)) @ e®@ by = e®
(e— (e®b))®by=e® b ®by. Hence A[b; ® bale = A ([b1]e ® [b2]¢) which shows that
Pe(b1® b2) = Pe(b1) ® Pe(ba).

(2) follows trivially from surjectivity of P,. [ |

As for the projection P¢, the following example demonstrates that not only P¢ is not a
homomorphism of structures (L, ®) and (L/e, ®) but, in general, there cannot be introduced
a structure of residuated lattice on L/e such that P¢ is such a homomorphism. This shows
the importance of the projection P..

Example 7 Consider L ={0,0.5, 1} with the structure of equidistant Lukasiewicz chain from
Example 5. We have P¢(1) = P¢(0.5) =1, P¢(0) =0. If P° was a homomorphism then
1=1®1=P¢0.5)® P¢(0.5) = P¢(0.5®0.5) = P¢(0) =0.

Regarding residuum, the following example shows that, in general, there exists no factor
projection P: L — L/e preserving residuum.

Example 8 Consider L with the structure of equidistant Lukasiewicz chain from Example 5
again and set e = 0.5. The mappings P., P¢ are the only factor projections from L to L/e.
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For mapping P, we have P.(0.5) = P.(0) =0 and P.(0.5— 0.5) = P,(1) =1 while P.(0.5 —
0) = P.(0.5) = 0. Hence P,(0.5) = P,(0) but P.(0.5— 0.5) # P.(0.5— 0). Similarly, we have
P¢(0.5) = P¢(1) =1 but P(0.5— 0) = P¢(0.5) = 1 while P¢(1 — 0) = P¢(0) = 0.

Hence, neither P., nor P¢ is a morphism with respect to —.

To summarize our previous results, the projection P, preserves the product but it does not
preserve residuum. The projection P¢ does not preserve neither product, nor residuum. As
counterexamples show, it is not possible to make this situation better, i.e., it is not possible to
introduce operations of product and residuum on L/ e such that P, would preserve residuum,
or P¢ would preserve product or residuum.

The following theorem shows a weaker connection between residuum and projection P,.

Theorem 9 For any ay, ag € L, Pe(a1 — ag) < Pe(a1) = Pe(ap).

Proof. We have \/ P.(a1 > @) = e —> (e® (a1 > @) <e— (a1 > (eQm)) = (eQa) —
(e® ap) and \/(P.(a1) = Pe(a2)) = (A Pe(a1)) = (/\ Pe(a2)) = (e® a1) — (e® az). Hence
\ Pe(ag = a2) < \/(Pe(a1) = Pe(a2)). |

Note that there are some important cases when the desired equality P.(a; — az) =

P.(a1) = P.(az) is true. In the following examples, we show some of them.

Example 9 Consider the case when ay = \/ P.(a2). We have ay = ¢ — (e ® az) and
V(Pe(a1) > Pe(m))=(e®a1) > (e®@ @) =a1 — (e~ (e®a)) = a1 = az < \/ Pe(a1 — a2).
As a consequence, we obtain \/ P.(a; = a2) = a1 = ap.

Example 10 Suppose that there is only one block B € L/e containing a; — ap. In this case,
e—>e®(ag —> a2) =e— (a1 > ag) and \/(Pe(a1) = Pe(a2)) = (e®@a1) = (e® a) < (e®
a)—>m=e—> (> x)=ec—> e®(a > a) =\/ Pc(a1 —> ap).

As the last remark, we show some basic result for right inverses of factor projections P,
and P¢. We consider two mappings ., @°: L/e — L:

Qc: B \/B. (33)
Q°: B~ /\ B. (34)

Clearly, Q. is a right inverse of P, and Q¢ is a right inverse of P°.
It can be shown by counter-examples as above that Q. does not preserve product and Q°

does not preserve neither product, nor residuum. However, the mapping @, does preserve
residuum:

Theorem 10 The mapping Q. is a homomorphism of structures (L/e,—) and (L,—).

Proof. Follows directly from (25). [ |

3.3 Sequential factorization

Let e1, eg € L. We shall factorize residuated lattice L by two ways. First, we shall factorize
L by the tolerance ~., induced by e; and then the resulting residuated lattice L/e; by the
tolerance ~g on L/e; induced by the block £ =[ez],, € L/e;, obtaining the factor residuated
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lattice (L/e1)/E. Second, we shall factorize L directly using the element e; ® ey € L obtaining
the factor residuated lattice L/(e1 ® e2).

In this section, we show that both ways lead to the same result; more precisely, we find a
canonical isomorphism between residuated lattices (L/e;)/E and L/(e; ® e2).

For any B e (L/e;)/E and B e L/(e; ® ep) set

UuB) = (B (35)
V(B) = {AeL/e | ACB). (36)

Since B is a system of subsets of L then U(B) C L. We also have V(B) C L/e;.

Lemma 3 For any B e (L/e))/E it holds U(B)eL/(e1® e2). U(B) is_equal to the interval
[ag, a1], where ay = /\ Ao for Ag=A\B and oy =\/ A1 € L for A; =\/B.

Proof. We shall show that U(B) = [ag, a1] = [a1](e;@e)-

Since for any A € B and a € A it holds ag < NA<a<\/A<a then U(B) Clag, &1]. To
prove the converse inclusion we need to find to any a € [qg, a;] a block A € L/e; such that
a€AC[ap, m]. Set A=[aV(e1 = ap)le,- We have aV (e — ap) > a and e ® (aV (e; —
ap)) =(e1 ®a)V ap < a, which means a € A. From aV (e > ay) < a; and ¢ —> (e;®@ a1) = a1
it follows \/ A=¢; — (a1 ® (aV (e1 = @))) < a;. Finally, we have (e; ® a) vV ay > ap. Thus,
A Cag, a1].

To finish the proof we shall show that [ap, a1] = [a1](¢,@e,)- We have from Lemma 1,
a®ea®a=NEQVAI=A\E®A)=NAy=aq and (e1®@e) —> ay=N\E —> N\ A=
V(E— Ag) =V A1 =a. [

Lemma 4 For any B € L/(e1 ® e2) it holds V(B) € (L/e1)/E. V(B) is equal to the interval
[Ao, A1l, where Ay =[ap]l® for ap = A\ B and A1 =[aile, for a1 =\/ B.

Proof. First, we shall show that Aj C B and A; C B. We have by Theorem 4 and adjointness,
p=eRea®((a®e)—> a)=ec®(@®(e—> (e a)) <ea®(e — a) < a. Hence,
e1 ® (e1 — ay) = ag, which is equivalent to ay = /\ Ap. Similarly, a1 = (&1 ® e2) > (&1 ®
a®a)=¢e — (> (a®e®a))>e — (e1®ay) > a;. Hence, e - (€1 ® a1) = a1 and
a) = \/Al.

For A € L/e;, the condition A € [Ay, A1] is equivalent to ag < /A A and \/ A < a;, which is
equivalent to A € B. Thus, V(B) = [4o, 41].

It remains to be proved that E® A; = Ag and E — Ay = A;. This can be done by a similar
way to the proof of Lemma 3: we have A(E® A1) = AEQVAi=e1®e®a =a = /4o
and \/(E— A))=ANE—> Nd=(e1®e)—> aq=a =\ 4. |

According to the previous two lemmas, equations (35), (36) define mappings U :
(L/e1)/E — L/(e1®e2) and V:L/(e; ® e2) — (L/e1)/E. The following theorem shows their
main property.

Theorem 11 U is an isomorphism of residuated lattices with U™t = V.

Proof. From the above lemmas we obtain A U(B) = A A B and A A V(B) = A B. Since
elements of L/e;, (L/e1)/E, and L/(e; ® e2) are uniquely identified by their infimas then V
is the inverse of U.
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Now for any a € L, /\ Pege,(a) = €1 ® e2® a and

AN\Pe(Pa(@)= = A\(E®P,(a) =
VE® \Pe(a)=
\/E®61®a=

el®\/E®a=
= eQeda.

This shows that Pe,ge, = Uo Ppo P, (and PgoPe = Vo P, ge,). Hence the result follows
from Theorem 8, part (2). |

4 Application to fuzzy concept lattices

In this part, we show how the problem of factorization of concept lattices of data with fuzzy
attributes can be solved using factorization of residuated lattices. This result can serve the
reader as an example of a more general approach to factorization of fuzzy systems, which is
outlined in the last section of this paper.

We start with Sec. 4.1, where we give a slight generalization of our previous results.
Next, in Sec. 4.2, we recall basic definitions from formal concept analysis of data with fuzzy
attributes and then, in Sec. 4.3, we give an overview of the problem of factorization of fuzzy
concept lattices and then prove our result. Section 4.4 contains an example.

4.1 Factorization of LY

Recall that a fuzzy set (or, more precisely, an L-set) in a universe X is a mapping A:
X — L. The set of all L-sets in the universe X is denoted L%, the direct product algebra
(with operations defined pointwise by means of operations on L) is denoted by LY. LY is a
residuated lattice.

For two L-sets A, B € LX we set

A<B iff A(z) < B(z) for any z € X. (37)
The degree of similarity of two fuzzy sets A, B € LY is defined by

A~ B= /\ (A(z) < B(x)). (38)
zeX

~X is a fuzzy equivalence on LY, hence its e-cut %5 defined by

A~X B iff A~Y B>e, (39)

is a tolerance relation on L¥ (note that when identifying L with L") this relation is equal
to the relation ~, introduced before).

The relation %f coincides with the e-cut ~, of biresiduum on the residuated lattice L*
(see beginning of Sec. 2.3). Hence, if we identify e with the constant mapping z — e, then

the factor set LX/%‘? is equal to the factor set L* /e.
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In this section, we show how this factor set can be identified with the set (L/e)¥ of all
L/e-sets in the universe X. First we give some notations and prove an auxiliary lemma.
For S CLX and z € X we set

S, ={A(z) | AeS). (40)

Lemma 5 A subset S € LX is a mazimal block of %f if and only if for any x € X it holds
Sy e€L/e.

Proof. Let S € LX/e, A,B e S. Then A(zx) < B(z) > Nyex(A(y) < By)) = (A~ B) > e
showing that S, is a block of ~.. Now let a € L be any element such that a ~. b > e for any
b e S;. Choose any B € S and set

a if y=ux,
¢y) :{ B(y) otherwise. (41)
Now for any A € S we have A~ B > e which means that a € S;. This proves that S, is a
maximal block.

To prove the converse, we suppose that for any z € X, S; C L is a maximal block of ~..
For A, Be S and z € X we have A(z) <> B(z) > e, which means that A~ B= A ,_y(A(z) <
B(z)) > e. This shows that S is a block of ~X. Now let A € L* satisfies A ~ B > e for any
B e S. Then for z € X we have A(z) <> B(z) > A~ B > e. Since B is arbitrary we obtain
A(z) <> b> e for any b€ S;. S is a maximal block and A(z) € S;. This holds for any z € X
which means that A € S and § is a maximal block of ~. [ ]

Now we can define a mapping I: LY /e — (L/e)X by
1(S)(z) = Ss. (42)

Theorem 12 The mapping I is a bijection.

Proof. For T € (L/e)* set J(T)={Ae LX |for any v € X, A(x) € T(z)}. We have J(T) < LX
and by Lemma 5, J(T) € L¥/e. Hence J: (L/e)* — L*/e. Obviously, J is the inverse
mapping to I. |

For any L-set A € LX we shall use the symbols A€, A,, [A]¢, [A]. as before, where e is
identified with the constant mapping z — e (see beginning of Sec. 2.3 for definitions of these
symbols). We have A°¢, A, e LY, [A]%, [A]. € (LY)/e.

In what follows, we shall not use the mapping I explicitly and not distinguish between
sets LY /e and (L/ e)X and their elements. For example, we can consider [A]. as an element
of (L/e)*, having [A(z)]. = [A]e(x) € L/e, for any z € X.

4.2 Fuzzy concept lattices

In this section, we recall briefly basic definitions from formal concept analysis of data with
fuzzy attributes. We refer the reader to [2] for details.

Let X, Y be sets, [: X x Y — L an L-relation between X and Y. The triple (X, Y, I)
is called a data table with fuzzy attributes, elements of X and Y are called objects and
attributes, respectively. (X, Y, I) represents a table which assigns to each z € X and ye Y
a truth degree I(z, y) € L to which object z has the attribute y.



Factorization of residuated lattices 217

For L-set A € L of objects we define an L-set A" € LY of attributes by

At(y) = )\ (Ax) = I(z.y)). (43)

reX

Similarly, for any L-set B of attributes we define an L-set B of objects by

BY(z)= )\ (B(y) = I(z,y)). (44)

yeY
Further we set
BX,Y,)={(A, B el*xL' | A" =B, B" = 4). (45)
We define a partial ordering on Z(X, Y,I) by
(A1, Bi) < (A2, Bp) iff Ay <Ay (46)

(or, equivalently, By < By). #(X, Y, I) with this ordering is a complete lattice, called a
concept lattice induced by (X, Y, I).

Elements (4, B) of (X, Y, I) are called formal concepts, for each formal concept (A, B),
A is called its extent, B intent. Formal concepts are interpreted as concepts/clusters hidden
in the data table. Namely, the conditions AT = B and BY = A say that B is the collection
of all attributes shared by all objects from A, and A is the collection of all objects sharing
all attributes from B.

4.3 Factorization of fuzzy concept lattices

In this section, we recall the parametrized concept lattice factorization method, as introduced
in [1]. Then we show that the factorized lattice Z(X, Y, I)/~. obtained by this method is
in fact isomorphic to the concept lattice (X, Y, [I]¢), computed from a data table with
values lying in the factorized residuated lattice L/e.

We introduce a similarity relation ~ on the set Z(X,Y,I) of all formal concepts of
(X,Y,I) by

(A1, Bi) ~ (A2, By) = Aj &% Ay (47)
(see (38)). As it can be shown, we also have
(A1, By) ~ (A3, By) = By ~" B,. (48)

Therefore, measuring similarity of fuzzy concepts via extents corresponds to measuring their
similarity via intents.

(Ay, By) =~ (Ag, By) is called the degree of similarity of formal concepts (A, B;) and
(A9, By). = is known to be a fuzzy equivalence on #(X, Y, I). Therefore, for any user-chosen
threshold e € L, the e-cut =, is a (crisp) tolerance relation (“being similar to degree at least
e”) on A(X,Y,I). This tolerance is compatible with the lattice structure on #(X, Y, I).
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From results of Sec. 2.2, namely Theorem 1, we now obtain that maximal blocks of ~,
are exactly intervals [(4, B)]~, (or, equivalently, intervals [(4, B)]¥¢), and the factor set
PB(X,Y,I)/~. together with the ordering given by (12) is a complete lattice.

We start by a summary of known facts, which we shall use to prove our result. Reader
can refer [3] for details.

Theorem 13 For (A, B) € (X, Y, I) we have

1. e— A is an extent, e — B is an intent,
2. (A,B)¥ =(e— A, (e® B)'"),

3. (A, B)~, = ((e® A)T, e — B),

4. (A, By = ({4, B)™)~, ).

For the data table (X, Y, I), the L-relation [ is a mapping I: X x Y — L. Using results
of Section 4.1, we define an L/e-relation [I]°: X x Y — L/e by

L] (z, y) = [I(z, y)I° (49)

(as mentioned at the end of Section 4.1, we do not distinguish between elements of (L/e)**"
and LYY /e).

For Ae L¥/e, Be LY /e we consider the mappings T, and ¥ with respect to the formal
context (X, Y, [I]¢)

The following lemma has been proved in [1].

Lemma 6 For any Ay, Ay € LY, A; ~%X 45 < AI %YA; For any By, By € LY, By ~Y By <
By ~X B}.

Proof. We have AI ~X A; = /\yeyAI(y) < Ag(y) and

Al(y) < A (y) =

(/\A1 —>I:vy> (/\AQ —>I:vy)>

reX reX

N\ (Ai(z) = I(z,y)) & (Aa2(2) = I(2,y))) =

reX

/\ A1 (—) Ag )
reX

Ay =5 Ay

v

v

The second statement follows by duality. |

Lemma 7 For any Ae LX/e with A = \/;1 it holds AY = [AN°. For any B € LY /e with
B=\/B it holds B =[B']°.
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Proof. We have

Aly) = N\ Al@) - U (z.y) =
reX
= NA@)—le>I(z.y)l.=
rzeX

= /\[A Ne— [e— I(z,y)]e=

rzeX

= AIA@) > (e> I(z.y)], =
reX

= Ale= (A@) = I )], =

rzeX

= N[~ I(z.y) =

rzeX

= [/\ (A(z) = I(z, y))] =

rzeX

= [AM(y)1"

The second statement follows by duality. |

Lemma 8 For any A € LX/e, if A€ A then AY € AY. For any B e LY Je, if B € B then
BY e BY.

Proof. This is a simple consequence of the previous two lemmas. If A € A then A < \/;1
and A X VA= e Hence AT > (\/A)" and A" ~Y (\/A)' > e (Lemma 6). Thus, A" €
[(\/ A)']¢ = AT (Lemma 7). The second statement can be proved similarly. |

Lemma 9 If A e LX/e is an extent of the formal context (X, Y ,[I1°) then A= \/;1 e LY is
an_extent of the formal context (X,Y,I). Moreover, for the extent A’ = (e® A)M it holds
VA=e— A

Proof. Denote A=\/ A. We have from Lemma 8, A™ € A and, at the same time, A™ >\/ A.
Hence the first assertion. Now, for the extent A’ = (e ®_A)N we have e — A" > A, but,
according to Lemma 8 and because ¢ > (e® A) = A€ A, e > A’ € A. This shows that
e — A’ = A and completes the proof of the Lemma. |

Lemma 10 For any extent A € L* of data table (X, Y, I), [A]¢ is an extent of the data table
(X, Y, [11° with the corresponding intent equal to [(e — A)1]°.

Proof. Set B; = (e — A)!. For A=[A)° it holds A=[e— A),, e— A=\/ A. Applying first
statement of Lemma 7 to A we obtain [A]¢" = AT =[e — A’ =[B]".
By second statement of the same lemma, [B]%Y = [(e —> Bl)i]c. Hence, \/[Bl]” =ec—

(e— (e - A)M¥. By Theorem 13, parts 2., 3, this is equal to the extent of the formal concept
(({4, B)™®)~,)~¢. By the same theorem, \/[A]¢ is equal to the extent of the formal concept
(A, B)“ Since these two formal concepts are equal (Theorem 13, 4.) we have [B;]°F = [A]°.
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Let (;1, B) € B(X, Y,[I1°) be a formal context of data table (X, Y, [I]°). From Lemma 9
it follows that A; = \/;1 is an extent of the data table (X, Y, I) and there is another extent
A of the same data table such that A; = e — A (recall that A is an element of (L/e)* which
can be identified with (LY)/e; see end of Sec. 4.1).

On the other hand, from Lemma 10 it follows that for any extent A of the data table
(X,Y,I),[A]%is an extent of (X, Y, [I]°). But \/[A]° = e —> A. We have therefore established
a bijection Fj from the concept lattice (X, Y, [I]¢) to the set of L-sets of the form e — A,
where A is an extent of (X, Y, I). The bijection Fj is formally given by

Fi((A, B)) \ A (50)
Fille— A) = ([AI%[(e— A)"9). (51)
Now, Theorem 13, part 2, together with Theorem 1 says that there is also a bijection F»

from the set of L-sets of the form e — A, where A is an extent of (X, Y,I) to the factor
lattice (X, Y, I)/~.. This bijection satisfies

Fy(e— A)
FyH([(A, B)T™)

(A, AN =[(e > A, (e = A)N)]~,, (52)
e— A. (53)

Hence we have constructed a bijection F': B(X, Y,[I]¢) > B(X,Y,I)/~, F = Fyo F}.

This bijection satisfies
- -\ 1
VA, (\/ A) ; (54)

(A1 [(e > A)M°). (55)

|
—~
Ny
oo
=
I

N
=
3
=
I

Using mapping F, we state the main result of this section:

Theorem 14 Mapping F is an isomorphism of lattices.

Proof. It remains to be shown that F and F~! are morphisms of ordered sets. For
(A,B),(C,D) € B(X,Y,[I]°) denote A; =\/A, C; =\/C. We have (4, B) < (C, D) iff
A<C (46), which is equivalent to 4; < C} (12).

From Lemma 9, A; is an extent of (X, Y, I) and for extent 4 = (e® A;)™ of (X, Y, )
it holds A = e —> A. Hence from Theorem 13, parts 2 and 3, \/[(Al,AI)]Ne = (Al,AI)
and, by the same argument, \/[{C], Cf”% = ((Y, ClT). Hence, A; < C; is equivalent to

[(Ay, AD)~, <[(C1, O], m

4.4 Example

Consider L =1{0,0.5, 1} with the structure of equidistant Lukasiewicz chain and a formal L-
context (X, Y, I), where X is the set of nine planets and Y the set of their attributes related
to their size and distance from the Sun [2]. The context is given by Fig. 1, the corresponding
fuzzy concept lattice is depicted in Fig. 2.

Now set e=0.5. We have L/e={0, 1} where 0= {0, 0.5} and 1 ={0.5, 1}. Moreover, [0]° =0,
[0.5]° =[1]° = 1. Now since for any (z,y) € X x Y it holds [I]1°(z, y) = [I(z, y)]° then we
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Size From sun
small large far near
Mercury 1 0 0 1
Venus | 0 0 1
Earth 1 0 0 1
Mars 1 0 0.5 1
Jupiter 0 1 1 05
Saturn 0 1 1 0.5
Uranus 0.5 0.5 1 0
Neptune 0.5 0.5 1 0
Pluto 1 1 0

Fia. 1. L-context of planets and their attributes

Fic. 2. L-concept lattice of the context given by Fig. 1

can easily compute all values of the L/e-relation [I]°. The resulting formal L/e-context
(X, Y,[I]° is depicted in Fig. 3.

Now the L/e-concept lattice of this context can be computed. The resulting lattice, shown
in Fig. 4, is isomorphic to the factor lattice (X, Y, I)/e, which is computed in [2].

Note that the same result can also be achieved using the formal context (X, Y, e — I)
with shifted incidence relation I. This follows from Theorem 13 and has been also discussed
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Size From sun
small large far near

0

o

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

e R — R )
[ — ]
e e e

S S D e e e e

Fic. 3. L/e-context (X, Y, [[]¢)

Fic. 4. L/e-concept lattice of the context given by Fig. 3

in [4]. Our approach, however, admits a generalization, as suggested in the next section.

5 Conclusion and future research

The main result of this paper is that for any residuated lattice L and a threshold e € L there
is a unique structure of residuated lattice on the factor set L/e (the set of maximal blocks
of some tolerance relation induced by e) with some natural properties. We have shown an
application of this result in Sec. 4, illustrated by the example in Sec. 4.4.

This application suggests the following generalized approach to complexity reduction of
fuzzy systems. Consider a fuzzy system .# over a residuated lattice L and choose an element
e € L. Since there is a well-defined structure of residuated lattice on the factor set L/e then
it makes sense to consider transferring the system . to another fuzzy system, say .//e,
over the residuated lattice L/e by some meaningful way.

One measure of “meaningfulness” of this transfer could be the following (if applicable): if
the system . outputs a result a € L in some situation, then the system .%/e must output
a result B € L/e such that a € B in the same situation.
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The transfer (X, Y,I) — (X, Y,[[]¢) from the previous section can be regarded as a
meaningful transfer in this sense, since for any (z,y) € X x Y we have I(z,y) € [I(z, y)]°.

Since the number of elements in L/e is usually less than the number of elements in L
(provided L is finite) then there is a possibility that ., or any data associated with it, can
be now reduced in size without losing any information.

The possibility of reducing the complexity of fuzzy systems by means of factorization of
residuated lattices will be a subject of our future research. Some partial results have been
already obtained in the field of minimization of fuzzy automata [5].
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Abstract. In the first part, we extend our results from a previous paper on fac-
torization of residuated lattices to residuated lattices with hedges. In the second
part, we show how this result can be applied to the problem of factorization of
fuzzy concept lattices with hedges. Our approach is that instead of factorizing
the original concept lattice with hedges we construct a new data table with fuzzy
values of attributes in a factorized residuated lattice with hedges and show that
the induced concept lattice is isomorphic to the factor concept lattice.

1 Introduction

Formal concept analysis (FCA) is a popular method for analysis of object-attribute data
[11], [9]. Its aim is to process data in a tabular form (describing objects and their at-
tributes) and extract interesting clusters, called formal concepts, which correspond to
maximal rectangles in the processed data table. These formal concepts form a concept
lattice, which represents the main output of the method.

In the case of formal concept analysis of data with fuzzy values of attributes the
domain for data can consist of more than two elements (representing degrees to which
particular objects can have particular attributes). Since the number of formal concepts
can be large in this case, several methods of reducing the size of resulting concept lattice
have been proposed. In this paper, we consider two of them: factorization and hedges.

The idea behind factorization of fuzzy concept lattices is that instead of consider-
ing the original concept lattice, which can be very large, we accept not to distinguish
between formal concepts which are sufficiently similar. This can be done by choosing
a degree of similarity of formal concepts and factorizing the concept lattice by the tol-
erance relation induced by this degree. As the result, we obtain a smaller lattice, whose
size depends on the prescribed degree. This parametrized size reduction method has
been introduced in [1] and further improved in [3], see also [2].

In [8], the notion of fuzzy concept lattice with hedges was introduced (see also [4],
[SD. It can be viewed as another tool for reducing size of concept lattices. It introduces
two additional parameters, called (truth-stressing) hedges, which are unary functions
on the scale of truth degrees and can be seen as truth functions of connectives “very
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ISBN 978-80-244-2111-7, Palacky University, Olomouc, 2008.
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true”. Hedges can be used as parameters selecting “important attributes” and “important
objects”. Stronger hedges lead to smaller number of extracted concepts.

In [6], these two approaches (factorization and hedges) were combined and a method
of factorizing fuzzy concept lattices with hedges was introduced.

In [17], we dealt with residuated lattices, which are frequently used as structures of
truth values in fuzzy logic, and as such are also used in the above papers. We showed
(using results of [10] and [18]) that residuated lattices can be factorized by means of
a prescribed degree of similarity of truth values. We also stated a general idea of ap-
proximate size reduction of fuzzy systems by factorizing the underlying structure of
truth values (i.e., a residuated lattice) by a tolerance relation, induced by the user-
prescribed degree to which we allow different truth values to be non-distinguishable.
We also showed that this general idea is applicable to fuzzy concept lattices: factorized
fuzzy concept lattice is in fact isomorphic to another concept lattice, constructed from
a data table with values from factor residuated lattice.

In this paper, we first generalize our results from [17] to residuated lattices with
hedges. We show that any hedge on a residuated lattice induces a hedge on the factorized
residuated lattice. The only limitation is that the prescribed similarity degree must be a
fixpoint of the used hedge (similar condition appears also in [6]).

In the next part we show that factor fuzzy concept lattices with hedges can be again
described by means of factor residuated lattices with hedges. More precisely, we show
that each factor fuzzy concept lattice with hedges is isomorphic to a fuzzy concept lat-
tice with hedges built on a data table with values from the factorized residuated lattice.

This paper is organized as follows. In Section 2 we summarize basic known facts
on residuated lattices, fuzzy sets, factorization of residuated lattices and factorization of
concept lattices with hedges. In Section 3 we give our two main results on factorization
of residuated lattices with hedges and factorization of concept lattices with hedges.

2 Preliminaries

2.1 Residuated lattices and fuzzy sets

We use complete residuated lattices as structures of truth values. We recall only basic
facts here, for more detailed review, we refer the reader to [2], [12].

A complete residuated lattice is defined as an algebra L = (L, A, V,®,—,0,1) such
that (L, A, V,0,1) is a complete lattice with the least element 0 and the greatest element
I; ({L,®,1) is a commutative monoid (i.e. ® is commutative, associative, and a ® 1 =
1 ®a = a for each a € L); ® (product) and — (residuum) satisfy so-called adjointness
property: a® b < ¢ iff a < b — ¢ for each a,b,c € L. Elements of L are called truth
degrees. ® and — are (truth functions of) “fuzzy conjunction” and “fuzzy implication”.

For each complete residuated lattice we consider a derived (truth function of) logical
connective < (“fuzzy equivalence”) defined by a < b= (a — b) A (b — a). < is called
biresiduum and is used for measuring similarity of truth degrees.

A common choice of L is a structure with L = [0, 1] (unit interval), A and V being
minimum and maximum, ® being a left-continuous t-norm with the corresponding —.
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Three most important pairs of adjoint operations on the unit interval are:

a®b = max(a+b—1,0),

Lukasiewicz:
! VI i b = min(l —a+b,1),

(1)
a®b = min(a,b),
Godel: { 1ifa<b, (2)
a—b = .
b otherwise,

a®b = a-b,
Goguen (product): { 1 ifa<b, 3)
a—b =4, .
- otherwise.

Complete residuated lattices on [0, 1] given by (1), (2), and (3) are called standard
Lukasiewicz, Godel, Goguen (product) algebras, respectively.

The class of complete residuated lattices include finite structures as well. For in-
stance, we can put L, = {ap = 0,ay,...,a, = 1} C [0, 1], where ap < --- < a, are
equidistant and ® and — are restrictions of the operations from (1). In this case, the
residuated lattice Ly 11 = (L, 1, min, max,®,—,0,1) is called an equidistant L.ukasie-
wicz chain.

A special case of a complete residuated lattice is the two-element Boolean algebra
({0,1},A,V,®,—,0,1), denoted by 2, which is the structure of truth degrees of the
classical logic. That is, the operations A, V,®, — of 2 are the truth functions (interpre-
tations) of the corresponding logical connectives of the classical logic.

A hedge (or truth stresser) on residuated lattice L is a unary operation * satisfying
(i) 1* =1, (ii) a* < a, (iii) (a — b)* < a* — b*, (iv) a™ = a*, for a,b € L. A hedge * is
a (truth function of) logical connective “very true” [13].

Among all hedges on any residuated lattice, the greatest one is given by a* = a and
is called (obviously) identity. The smallest hedge is called globalization and is given by
1* =1and a* =0 for a < 1. In Fig. 1 there are depicted all possible hedges on Ls.

0.75
0.5
0.25

Fig. 1. All hedges on L3

Element a € L is said to be a fixpoint of hedge * if ¢* = a. For two fixpoints a;,a,
of x, the product a ® b is also a fixpoint of x.

Recall that an L-set (or fuzzy set) A in universe X is a mapping A: X — L. For any
x € X, A(x) is interpreted as the degree to which x belongs to A. For two such L-sets
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A1,A, the degree of their similarity A; ~X A, € L is defined by
Ay RX Ay = N\ Al(x) & Ay (x). 4)

xeX

2.2 Factorization of residuated lattices

We use factorization of residuated lattices by compatible tolerances as the main tool
in this paper. Regarding factorization of (complete) ordinary lattices we use results of
Cz&dli [10] and Wille [18].

Recall that tolerance on a set X is a relation ~ which is reflexive and symmetric.
Each tolerance induces a covering of its underlying set, called the factor set. This set
consists of all maximal blocks of the tolerance, i.e., the maximal subsets whose any two
elements are in ~. In the case of tolerance ~ on the set X, the factor set is denoted X /~.

Compatible tolerance relation on a complete lattice L is a tolerance which preserves
suprema and infima, i.e., a tolerance ~ on L is compatible if from a; ~ b; for any j € J
follows Vjcya; ~Vjesbjand Ajeya; ~ Njesb;.

For a € L we denote

a~=\V{beL|a~b}, a.=N{beL|a~b}, )
[a] . = la~ (a)7], [a]™ =[(a7)~a7] ©)

([a1,a2] denotes the interval {b € L | a; < b < ay}).

Maximal blocks of ~ are exactly sets [a].. and [a]™, i.e., it holds L/~ = {[a]~ | a €
L} ={la]” [acL}.

Ordering on the set L/~ is introduced using suprema of maximal blocks and can be
equivalently introduced using infima. For blocks By,B, € L/~ we set

B <B, iff \/B <\/B. (7)

The set L/~ together with this ordering is a complete lattice, which is denoted by L/~.

Now suppose that L is a residuated lattice. The following results can be found in [2],
[3], where a more general approach is presented, namely sets of fixpoints of L-closure
operators are considered in place of residuated lattice L.

For e € L we denote the e-cut of biresiduum in L by NE or simply ~,. By definition
of e-cuts of fuzzy relations, for any a,a; € L, aj ~, ay if and only if a; <> ay > e. ~,
is a compatible tolerance on L.

We introduce the following simplified notations: a, = a~,, a* = a™, [a], = [a]~
[a]® = [a]™*. The factor lattice L./~, will be denoted by L/e.

It holds for any a € L, a, = e ® a, a® = e — a. As a consequence, we obtain the
following equalities, which hold for any maximal block B € L/~,: \/B=¢ — AB,
AB=e®\VB.

In [17] we introduced a structure of residuated lattice on the factor set L/e as fol-
lows. For By,B; € L/e we set

e

B1®B;

VB2V . @®)
Bi—B = |\/Bi— /B . ©)
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Now the set L/e together with elements 0,1 € L/e and operations A,V given by the
factor lattice structure and together with operations ®, — introduced in (8) and (9) is a
complete residuated lattice, which is denoted by L/e. More formally, L/e is equal to
the tuple (L/e, A\, V,®,—,0,1).

In the following lemma, we introduce some basic properties of factor residuated
lattices which will be needed later. For more systematic approach, the reader can refer
to [17].

Lemma 1. For any aj,a; € L, By,By € L/e it holds

[al *)aZ]e < [al]e - [‘12]67 (10)
a1 — (e = a2)]e = [ai]e — [e — az]e, (11
\/(Bi — B;) = \/B; — \/Bx. (12)

2.3 Fuzzy concept lattices with hedges

In this section, we recall some basic notions and notations and state some basic results
on fuzzy concept lattices with hedges and their factorization. We refer the reader to [2],
[6], [8] for details.

Let X, Y be nonempty sets, /: X XY — L an L-relation between X and Y. The
triple (X,Y,1) is called a formal L-context, elements of X and Y are called objects and
attributes, respectively. (X,Y,I) represents a data table which assigns to each x € X and
y € Y atruth degree I(x,y) € L to which object x has the attribute y.

For a hedge *x on L and L-set A € LX of objects we define an L-set AT € LY of
attributes by

Al = A A@)™ = I(xy). (13)
xeX
Similarly, for any hedge *y and L-set B of attributes we define an L-set B! of objects
by
B'(x) = A\ (BO)™ —I(x,y)). (14)
yey

The following lemma summarizes basic properties of mappings T and | [4]:
Lemma 2. Mappings T and | defined by (13) and (14) satisfy the following properties:

. A <A and B*Y < B'1;

. A1 <Ay implies A; < AI, and By < By implies B! < B% (antitony);
. Al = A" qnd B! = B*!;

AT < AN < AT gnd BYx < B < B*yl’-

AT = AT gpd BV = glILT B

U AN W~

Next we set
BXX ¥ 1) ={(A,B) e X x L' | A" =B,B' = A}. (15)
We define a partial ordering on #(X,Y,I) by
(A1,B1) < (A2,By) iff A; <A (16)
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(or, equivalently, By < Bjy). B(X*X,Y*',I) with this ordering is a complete lattice,
called an L-concept lattice induced by (X,Y,I) and hedges x*x, *y.

Elements (A, B) of Z(X*x,Y*Y I) are called formal concepts, for each formal con-
cept (A,B), A is called its extent, B intent. Formal concepts are interpreted as con-
cepts/clusters hidden in the data table. Namely, the conditions AT = B and B! = A say
that B is the collection of all attributes shared by all objects (for which it is very true
that they are) from A, and A is the collection of all objects sharing all attributes (for
which it is very true that they are) from B.

The main idea of adding hedges to fuzzy concept lattices is that using hedges, one
can affect the size of concept lattices. Namely, if we choose both xy, *y to be identities,
we obtain an ordinary fuzzy concept lattice. Other choices lead to smaller concept lat-
tices. For example, if both *x, *y are globalizations then the generated concept lattice
consists of so called crisply generated formal concepts [7]. If xx and *y are globaliza-
tion and identity (respectively) then B(X*X,Y*Y I) is isomorphic to so-called one-sided
concept lattice [15].

Now we recall the parametrized concept lattice factorization method, as introduced
in [1], and then mention its generalization to fuzzy concept lattices with hedges.

As we mentioned in Introduction, factorization represents another attempt to reduce
the size of fuzzy concept lattice. In this method, user choses a degree e € L to which
he/she considers two different concepts to be similar. Factorizing-out similar concepts
by a tolerance relation induced by e a smaller lattice is obtained. This lattice do not
preserve information on differences between similar concepts. Reader can refer [6], [8]
for details on factorization of concept lattices and its generalization to concept lattices
with hedges.

We introduce a similarity relation = on the set Z(X,Y,I) of all formal concepts of
(X,Y,I) by

(A1,B)) = (A2, By) = A} =¥ Ay 17)

(see (4)).

(A1,B1) = (A;, By) is called the degree of similarity of formal concepts (A}, B;) and
(A2,B5). = is known to be a fuzzy equivalence on Z(X,Y,I).

Since = is a fuzzy equivalence on %(X,Y,I) then, for any user-chosen threshold
e € L, the e-cut °~ is a (crisp) tolerance relation (“being similar to degree at least )
on B(X,Y,I). This tolerance is compatible with the lattice structure on #(X,Y,I).

Maximal blocks of ¢~ are exactly intervals [(A,B)]e~ (or, equivalently, intervals
[(A,B)]™, see (6)), and the factor set Z(X,Y,I)/°~ together with the ordering given
by (7) is a complete lattice.

This result can also be generalized to fuzzy concept lattices with hedges. First we
show some properties of the fuzzy equivalence ~* (resp. ~') on LX (resp. LY) with
connection to functions T and | [6]:

Lemma 3. For Aj,A, € LX and By,B> € L' we have (A) =X Ay)*™* < AI ~Y A; and
(B) =¥ B,)* < B} ~X B).

For a concept lattice Z8(X*X,Y*¥,I), similarity of concepts is defined as above, as
well as its e-cut, used for factorization. The factor set B(X*X,Y*Y I) /¢~ together with
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the ordering given by (7) is again a complete lattice. The structure of maximal blocks
of ¢~ on Z(X*X,Y*¥ I) is given by the following lemma.

Lemma 4. For (A,B) € #(X,Y,I) we have

1. (A,B)™ :<(6HA)“ (e®B)”>
2. <A,B> e~ = ((e@A)! (e — B)T),
3. (A,B)~ = (((A,B)’ )gg) :

4. (A,B)ex = (((A,B)ex) ¥)en

3 Results

3.1 Factorization of residuated lattices with hedges

The first main result of this paper concerns introducing a hedge on the factor residuated
lattice L /e induced by a hedge on the original residuated lattice L.

Suppose that * is a hedge on residuated lattice L and e € L is its fixpoint, i.e., e* =e.
We define a new unary operation *¢ (or, simply, * if e and underlying residuated lattice
are obvious) on L /e by setting for any B € L/e,

-[(v3)]. w

We have the following result for the new operation *°:
Theorem 1. Ife € L is a fixpoint of the hedge * then the operation x¢ on L /e is a hedge.
Proof. Let 1€ Land 1 € L/e be unite elements. We have 1 = (1], and

e e

=) =1".=1,

which proves condition (i) for hedges.
Now let B € L/e. Then

[(va)) = v, -

which proves condition (ii).
To prove condition (iii) we use Lemma 1 and obtain for By, B, € L/e,

= (Vo 0] = (V- V)
<[(va) (v ], = [(va) ], - [(ve) ] -

e e
=B] —B;.

Let B € L/e. To prove the equality B* = B*** we show that infima of both sides
are equal. Denote \/ B = a. We have AB* = e®a* and AB** = e® (e — e®a*)*.
Now, from condition (iii) for hedges and from the fact that e ® a* is a fixpoint of * (both
e and @* are fixpoints) we obtain

/\B*e*e <e®(ef = (e®d")")=e®R (e — e®a") :/\B*e.

The opposite inequality A B** < AB** follows from (¢ — e ®a*)* < e — e®a* by
multiplying both sides by e. This proves the remaining condition (iv) for hedges.
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3.2 Factorization of fuzzy concept lattices with hedges

In this section, we present our second main result: the factorized L-concept lattice
PB(X*x ,Y* I)/°~ is isomorphic to an L/e-concept lattice, constructed from a formal
L /e-context, which is easily computable from the original formal L-context (X,Y,1).

For any L-set A € LX we shall use the symbols A¢, A,, [A]°, [A]. as before, where e
is identified with the constant mapping x - e. We have A¢, A, € LX, [A], [A], € (LX) /e.

In what follows, we shall not distinguish between sets LX /e and (L/e)* and their
elements. For example, we can consider [A], as an element of (L/e)X, having [A(x)], =
[A].(x) € L/e, for any x € X (see [17] for details).

For a formal context (X,Y,I), the L-relation 7 is a mapping /: X x Y — L. Using
results from [17], we define an L/e-relation [[]°: X x Y — L/e by

1 (ey) = [ p)] (19)

(like before, we do not distinguish between elements of (L/e)X*Y and LX*Y /e).

Let (X,Y,I) be a formal context, xx, *y hedges, e € L a fixed threshold. We consider
a new formal L/e-context (X,Y,[7]°). Using results of previous section, we introduce
two thresholds %, *7 on the factor residuated lattice L /e such that e is their common
fixpoint. Then we construct the concept lattice Z(X*x,Y*¥,[1]°).

When the underlying residuated lattice and e are obvious, we also denote the thresh-
olds *%, *3 simply by xx, *y. Since there will be no possibility of confusion, we also de-
note the formal-context-defining operators with respect to the formal context (X, Y, [/]¢)
and hedges *%, *} again by T, and !

Lemma 5. Forany A € LX /e with A =\/A it holds A" = [A1]¢. For any B € LY /e with
B =\/B it holds B' = [B'].

Proof. From basic properties of blocks of compatible tolerances in residuated lattices
and from (11) we obtain

Al = NAN @) = 1 (xy) =

xeX

= NA%(x) = [e— I(x,y)]e =
xeX

= NA*®)]e — [e — I(x,y)]e =
xeX

— /\ [A*X ()C) — (e - 1(x7y))]e =
xeX

= /\ [e — (A*X (X) — I(xay»]e =
xeX

= N\ A™(x) = I(x,y)] =
xeX

= /\ (A" (x) — I(x,y))] =

xeX

AT ().
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The second statement follows by duality.

Lemma 6. For any A € LX /e, if A€ A then A' € Al. For any B € LY /e, if B € B then
B' € B..

Proof. This is a simple consequence of Lemma 5. If A € A then A <\/A and A =¥ A >
e. Hence f}T > (\/1_4)T (Lemma 2, part 2) and A" =¥ (\VA)! > ¢*¥ = ¢ (Lemma 3). Thus,
Al € [(VA)']¢ = AT (Lemma 5). The second statement can be proved similarly.

Lemma 7. For (A,B) € B(X**,Y*" [I]°), (\VB)! is the least fixpoint of 1| in A.

Proof. Denote By =\/B, Ay = B(l). First we show that Ag is a fixpoint of T |. The element
Ag is a fixpoint of |T (Lemma 2, part 5). We have BZY < A(T) (Lemma 2, part 1) and
A(T) < By (Lemma 6, applied twice). Hence for fixpoint Agl of 7| we obtain (using

Lemma 2, part 2), B(l) < A(T)l < B(’;”. But from Lemma 2, part 3, we have B(l) = B(*)”,
which shows that Ay is a fixpoint of 7.

Now from antitony of T and | (Lemma 2, part 2) we have for any fixpoint A € A:
A>NA, AT < (ANA)! < By (Lemma 6), which leads to Ag < ATl = A.

Lemma 8. For every (A,B) € B(X*X,Y* [I]¢), the set F((A,B)) of all (A,B) from
B(X*XY*¥ ) such that A € A, is a maximal block of ¢~ (i.e., F({A,B)) belongs to
BXX Y 1) [°m).

Proof. According to Lemma 7, Ag = (\/B)! is the least fixpoint of 1| in A. From
Lemma 5 we have e — Ag = \/A and (e — Ag)'} = A}, where A is the greatest fixpoint
of 7| in A. According to Lemma 6, A| € A.

It remains to be shown (Lemma 4) that Ag = (e ® A1)!} € A. We have (\VA)*¥ <
A; < VA (Lemma 2, part 1) and from Lemma 2, parts 2, 3, the intent B = AI is equal
to (VA)!. Hence, VB = ¢ — By (Lemma 5) and (e — B)'! is the greatest intent of
PB(X*x Y*r ) from B. According to Lemma 4, the corresponding extent is equal to Ag.
Applying Lemma 6 now completes the proof.

Lemma 9. For any maximal block K = [(Ag,Bo), (A1,B1)] € B(X*X, Y I)/°~ there
is exactly one formal concept G(K) = (A, B) € B(X*X,Y*¥ [I°) such that NA < Ay,
Ay <VA. It holds A = [Ag]°.

Proof. Since Ag ¢~ A; then there exists a maximal block A’ € LX /e such that Ay € A’,
A € A’. From Lemma 6 we have Ag € A'I}, A; € A’IL. This gives existence of at least
one (A, B) with desired properties.

Now suppose that (A,B) € B(X**,Y* [I]°) is such that AA < Ao, A} < VA. The
element (\/B)! is the least fixpoint of | in A (Lemma 7). Hence, (\/B)! = Ag (K is a
maximal block). From Lemma 5 we have A = [Ao]¢ which proves the uniqueness of A
as well as the desired equality.

Lemmas 8 and 9 give us mapping F : Z(X*X,Y* [I]°) — B(X*™X,Y* I)/°~ and
mapping G: B(X*X . Y*¥ I)/°~ — PB(X*X,Y* [I]°) which are obviously mutually in-
verse. Using mapping F', we state our main result:
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Theorem 2. Mapping F is an isomorphism of lattices.

Proof. It remains to be shown that F and G are morphisms of ordered sets. For two
elements (A, B), (C,D) € B(X**,Y* [I]°), denote F ({A,B)) = [(Ao, Bo), (A1,B1)] and,
similarly, F((C,D)) = [(Co,Dy), (C1,Dy)] (intervals taken in B(X*X,Y* I)).

If (A,B) < (C,D) then \/A < \/C, from which and from Lemma 7 it follows B; =
(VA)! > (VC)! = Dy This means [(Ao, Bo), (A1, B1)] < [(Co, Do), (C1,D1)].

To prove the opposite we start with Ay < Cp. This and Lemma 5 give VA =¢ —
Ay < e — Cy = \/C, which finishes the proof.

4 Conclusion

The two main results of this paper can be interpreted as follows. If we are trying to
reduce the complexity of some concept lattice with hedges by factorization, then we are,
in fact, constructing another concept lattice with hedges, which is built over a data table
with values in some factorized residuated lattice. Thus, the problem of factorization of
concept lattice by similarity is replaced with the problem of factorization of the used
set of truth degrees (residuated lattice) which indicate the similarity levels.

This paper extends our previous results from [17], where we considered residuated
lattices and fuzzy concept lattices without hedges.

There is even more general approach (“Generalized concept lattice”, [16]), which
contains the notion of fuzzy concept lattice with hedges as a special case [14]. There
arises a question whether the method of factorization of concept lattices can be gen-
eralized to this case. This question is open; the main obstacle seems to be that in this
general framework there is no known natural notion of similarity of concepts.
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Let B be a collection of fuzzy sets. What are the fuzzy sets which are sufficiently similar to
every fuzzy set from B, i.e. “central” fuzzy sets for B? Such question naturally arises if B
is large and one wishes to replace B by a single fuzzy set—the representative of B. In this
paper, we develop a framework which enables us to answer this question and related ones. We
use complete residuated lattices as the structures of truth degrees, covering thus the real unit
interval with left-continuous t-norm and its residuum as an important but particular case. We
present results describing central fuzzy sets and optimal central fuzzy sets provided similarity
of fuzzy sets is assessed by Leibniz rule.
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1. Problem Setting

Suppose there is a collection of metal poles of different lengths. Suppose a person
sees a picture of two poles from that collection and is asked to assess their similarity,
i.e. the person is asked to tell a degree p; = po to which the poles are similar. The
degree has to be a value between 0 and 1, p; ~ po = 0 and p; = py = 1 indicate that
the poles are not similar at all and that the poles are indistinguishable, respectively.
Since the poles are narrow, the person assesses their similarity based solely on their
lengths. The picture does not show a scale, i.e. the person does not know the actual
lengths of the poles. An obvious way to asses the similarity s of poles p; and ps of
lengths I(p1) and I(p2) is to put

l<p1) l(p2)> , (1)

pLRp2 = min(

i.e. to make the similarity judgment based on the ratio of the lengths. Namely, the
cl(p1) C'l(Pz)) for
cl(p2)’ cl(p1)
any ¢ > 0, so it can be assessed even when the person does not know the actual
magnification coefficient ¢ > 0, i.e. does not know the scale for the picture.
Given poles p; and py with lengths I(p1) and [(p2), what is the length of the pole

in the middle? That is, what is the length of the “central pole” p for which

ratio does not depend on the actual lengths, i.e. p; & ps = min (

p=p1=p=p2,

i.e. for which the similarity to p; equals the similarity to ps? An easy verification
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shows that the central pole p has length

l(p) = VIUp1) - VIp2). (2)

Suppose now that the longest possible pole has the length normalized to 1 and
the person knows the scale, i.e. knows the lengths I(p;) and [(p2). Then there is
another, perhaps more natural, way to assess the similarity. Namely, one can put

p1=py =1 |l(p1) = Up2)l, 3)

i.e. the similarity is proportional to the distance of the normalized lengths of p;
and po. If such measure of similarity is used, the length of the central pole p is

i) = "2 1P, ()

Obviously, given a set B = {p1,...,pn} of poles, the length of the optimal central
pole for B is

l(p) = \/miinl(pi) : \/m?Xl(Pi)
for similarity given by (1) and

min; I(p;) + max; [(p;)

l(p) = 5 :

for similarity given by (3).

In this paper, we present theorems and algorithms motivated by the above types
of problems. The first hint to a general framework for this kind of problems is the
observation that in (1),

p1 = p2 =1U(p1) < l(p2) (5)

with < being the biresiduum corresponding to product t-norm and that in (2),

l(p) =m @ +\/IU(p1) < U(p2) (6)

with m = min{l(p1),{(p2)}, ® denoting the product t-norm and ,/ denoting its
square root, as introduced by Hohle (1995). Likewise, (5) and (6) become (3) and (4)
if «» and ® denote the Lukasiewicz biresiduum and t-norm. Henceforth, we consider
the framework of left-continuous t-norms and their residua. In fact, we consider a
more general framework of complete residuated lattices (Ward and Dilworth 1939).

In general, we assume that B is a subset of a set S of fixpoints of some fuzzy
closure operator C' in a universe set X and study the “central fuzzy sets” of B,
i.e. fuzzy sets from S which are sufficiently similar to any fuzzy set from B. If C
is the identity, S is the set of all fuzzy sets in X, in which case no constraint is
imposed, i.e. B as well as the central fuzzy sets may be arbitrary fuzzy sets in X.
However, our setting with a general operator C' allows us to consider only certain
fuzzy sets (those which are the fixpoints of C') as the elements of B as well as the
central fuzzy sets of B. Example 3.7 clarifies why we consider general operators C.
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2. Preliminaries

2.1 Tolerance Relations

A tolerance relation, see e.g. (Pogonowski 1981, Schreider 1975), in a set X is a
binary relation 7T in X which is reflexive and symmetric, i.e. for every x,y € X, T
satisfies

(x,x) €T,
(x,y) € T implies (y,z) € T.

The concept of a tolerance relation generalizes the well-known concept of an equiv-
alence relation. Namely, T' is an equivalence relation if it is a tolerance relation
which is, moreover, transitive, i.e. for every x,y,z € X, if (z,y) € T and (y,z) € T
then (z,z) € T.

Let T be a tolerance in X. A class of T given by = € X is the set [z]p =
{y|{x,y) € T}. A set B C X is called a block of T if B x B C T, i.e. if for every
x,y € B, (x,y) € T. A block B of T is called maximal if it is maximal with respect
to set inclusion, i.e. if B’ x B’ € T for any B’ D B. It is easy to see that if T is an
equivalence relation, classes of T' coincide with maximal blocks of T.

While equivalence relations serve as simple mathematical models of indistin-
guishability, tolerance relations serve as models of similarity. Namely, equivalence
relations represent relationships defined by “have same features”, while tolerance
relations represent relationships defined by “have some features in common”, see
(Schreider 1975).

2.2  Fuzzy Sets and Fuzzy Logic

Residuated lattices as structures of truth degrees. In classical logic, the structure of
truth degrees is the two-element Boolean algebra, i.e. a structure L which consists of
a two-element set L = {0, 1} of truth degrees and is equipped with truth functions
of logical connectives. In fuzzy logic, there are more options, both for the set L
of truth degrees and for the functions of logical connectives. As the structures of
truth degrees, we use complete residuated lattices. Complete residuated lattices,
introduced to fuzzy logic by Goguen (1968-69), and their variants are used in
mathematical fuzzy logic (Gottwald 2008, Hajek 1998). Recall that a complete
residuated lattice is an algebra L = (L, A, V, ®, —,0, 1) such that (L, A, V,0,1) is a
complete lattice with 0 and 1 being the least and greatest element of L, respectively;
(L,®,1) is a commutative monoid (i.e. ® is commutative, associative, and a ® 1 =
1®a = a for each a € L); ® and — satisfy so-called adjointness property: a®b < ¢
iff a < b — ¢ for each a,b,c € L. That fact that (L,A,V,0,1) is a complete
lattice means that the infimum A, ; a; and supremum \/;.; a; exist for any subset
{a;|i € I} C L. Elements a € L are called truth degrees. Operations ® and —,
called multiplication and residuum, are truth functions of logical connectives “fuzzy
conjunction” and “fuzzy implication”. A biresiduum of L is a binary operation <
defined by

a—=b=(a—bADb—a)

We denote by < the lattice order induced by L. Examples of residuated lattices
are well known. A generic one is: Take a left-continuous t-norm ®. That is, ®
is binary operation on [0, 1], which is left-continuous in its first argument (as a
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real function of two variables), commutative, associative, monotone, and has 1
as its neutral element (Hajek 1998). Put a — b = \/{c € L|a ® ¢ < b}. Then
([0, 1], min, max, ®, —, 0, 1) is a complete residuated lattice. Three most important
pairs of adjoint operations on [0, 1] obtained this way are Lukasiewicz: a ® b =
max(0,a +b—1), a — b = min(1,1 — a + b); Goédel (minimum): a ® b = a A b,
a—b=>bfora>band a - b=1 for a <b; Goguen (product): a @b = a - b,
a—b= 2 for a > b and a — b =1 for a < b. Throughout the rest of the paper, L
denotes an arbitrary complete residuated lattice.

A special case of a complete residuated lattice is the two-element Boolean algebra
({0,1},A,V,®,—,0,1), denoted by 2. That is, the operations A, V,®, — of 2 are
the truth functions (interpretations) of connectives of classical logic.

Fuzzy sets and fuzzy relations. Given L, we define the usual notions regarding
fuzzy sets and fuzzy relations: a fuzzy set (an L-set) A in a universe X is a mapping
A: X — L, A(z) being interpreted as “the degree to which x belongs to A”. The
set of all fuzzy sets in X is denoted by LX. Operations with fuzzy sets are defined
componentwise. For instance, the intersection of fuzzy sets A, B € L is a fuzzy
set AN B in X such that (AN B)(z) = A(z) A B(z) for each x € X, etc. For fuzzy
sets A, B € LY, put

S(4,B) = |\ (A(z) — B(x)), (7)

zeX

A~ B = N (Alx) < B(x)). (8)
zeX

S(A, B) and A =~ B are called the degree of subsethood of A in B and the degree of
equality of A and B, respectively. Note that S(A, B) can be seen as a truth degree
of “for each x € X: if x belongs to A then x belongs to B”. Similarly, A ~ B
can be seen as a truth degree of “for each x € X: = belongs to A if and only if
x belongs to B”. & is a fuzzy equivalence relation, i.e. A ~ A = 1 (reflexivity),
A~ B =B = A (symmetry), and (A = B)® (B~ C) < A =~ C (transitivity),
which is called a Leibniz similarity. We denote the fact that S(A,B) =1by AC B
(A is fully contained in B). Hence, we have

A C B if and only if for each z € X : A(z) < B(x). (9)

For more details we refer to (Belohlavek 2002, Hajek 1998).

3. Central Points

3.1 Fuzzy Closure Operators

Suppose S is a system of fuzzy sets in X, i.e. S € LX. We are going to consider
the following type of problems. Given B C S, what are the fuzzy sets A € S which
are similar to every A’ € B to a degree at least 7 To asses similarity of A and
A’ we use = defined by (8). That is, A being similar to A’ to a degree at least
means A ~ A’ > e. Furthermore, we assume that S is a system of fixpoints of an
L-closure operator (fuzzy closure operator) C' in X, see Example 3.1, Example 3.6,
and Example 3.7 for particular examples.

Recall (Belohlavek 2001, 2002, Rodriguez et al. 2003) that an L-closure operator
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C in X is a mapping C : LX — LX satisfying

ACO(A), (10)
S(A1, A2) < 5(C(Ar), C(A2)), (11)
C(A) = C(C(A)), (12)

for every A, Ay, Ay € LX. As a consequence, we also have
(A1 & Ap) < (C(A1) = C(A2)). (13)
The set fix(C) of all fixpoints of C' is defined by
fix(C) = {A € L |C(A) = A}.

(fix(C),C) is a complete lattice in which the infima /A and suprema \/ are given
by

A Ai=(4

Jj€J JjeJ
Vi =c(Ua).
jeJ jeJ

for every {A;|j € J} C fix(C). In this paper, we often denote subsets of fix(C) by
B. Correspondingly, we denote the infimum and the supremum of B by A B and
\/ B, respectively.

Example 3.1 Clearly, the identity mapping C : LX — LX, ie. C(A) = A for
every A € LX, is an L-closure operator in X. In this case, fix(C) = L¥. O

Remark 1: The concept of an L-closure operator generalizes the well-known
concept of a closure operator. Namely, for L = {0, 1}, L-closure operators coincide
with ordinary closure operators.

3.2 Central Points, Closed Balls, and Blocks
Definition 3.2: Let B C fix(C). Given a threshold € € L, let

C.(B) = {A € fix(C) | for every A’ € B: A~ A" > ¢}.

We call the elements of C.(B) e-central points of B.

That is, C-(B) is the set of all fixpoints of C' for which the degree of equality
to every A’ € B is at least . In a sense, C.(B) contains all fixpoints which are
e-similar to every fixpoint from B.

Example 3.3 If B is empty or ¢ = 0 then C.(B) = fix(C).
Definition 3.4: Let A € fix(C). Given a threshold € € L, let
B:(A)={A € fix(C)|A~ A" > ¢}.

We call the set B:(A) a closed e-ball with center A.
Example 3.5 If ¢ = 0 then B.(A) = fix(C).



March 10, 2009

13:33 International Journal of General Systems belohlavek-krupka-ijgs

6 Radim Belohlavek, Michal Krupka

Note that it follows immediately from the definitions that
B:(4) = C:({A}). (14)

Remark 2:  The concept of similarity can be regarded as dual to the concept
of a distance. A simple way to illustrate this correspondence is the following one.
For any metric space M with a distance function d there can be introduced an
L-equivalence ~ on M, with L being the unit real interval [0,1] with Goguen
(product) structure, by putting

(z ~y) = e 4@y,

where d(x,y) is the distance of the points x and y. On the other hand, for any
L-equivalence ~ on M satisfying

rrey=1 iff z=y,
we can define a metric on M by

d(z,y) = —lg(x ~ y).

Note that the above relationship is a special case of a general relationship between
metric distances and fuzzy equivalences which are transitive w.r.t. a continuous
Archimedean t-norm, such as the Goguen (product) t-norm, which is described in
(De Baets and Mesiar 2002).

Now, any closed e-ball with center A in fix(C') coincides with the closed ball with
center A and radius —lge in the metric space (fix(C), d). This illustrates the fact
that the concept of a closed ball has its well-known counterpart in the theory of
metric spaces. However, let us emphasize that such counterpart is available only
for L = [0, 1] equipped with a continuous Archimedean t-norm ®.

The notion of e-central point seems to have no counterpart in the theory of metric
spaces.

Example 3.6 The notions of e-central points and closed e-balls generalize those
studied by Belohlavek and Krupka (2008a). Namely, Belohlavek and Krupka
(2008a) introduced the following concepts. Let L be a complete residuated lat-
tice with a support set L. For B C L and ¢ € L, the set C.(B) of central points
and the closed e-ball with center ¢ € L were defined by

C.(B) ={a€ L| foreachbe B: a— b>c¢e},
B.(c) ={a€L|a c>c¢e}.

Clearly, if we let X = {z} and identify the L-sets in X with truth degrees from L,
i.e. identify A € LY s.t. A(x) = a with a, then the notions of e-central points and
closed e-balls are particular examples of the corresponding notions introduced in
this paper. O

Example 3.7 Another example in which central points and closed balls natu-
rally appear comes from concept analysis of data with fuzzy attributes (Belohlavek
2002), see also (Ganter and Wille 1999) for formal concept analysis of data with
binary attributes. Let (X,Y, I) be a formal fuzzy context, i.e. X and Y are sets of
objects and attributes, and I : X XY — L is a fuzzy relation between X and Y.
For x € X and y € Y, I(x,y) is interpreted as the degree to which object = has
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attribute y. Let T : LX — LY and ! : LY — LX denote the associated operators,
i.e.

Aly) = N\ (Ax) — I(x,y)),

zeX

Bl(x) = N\ (B(y) — I(z,y)).

yeyY

Let B(X,Y,I) = {(A,B)| Al = B, B} = A} denote the associated concept lattice.
Elements (A, B) € B(X,Y,I) are called formal concepts and represent particular
clusters in the data described by (X,Y,I). A and B are called the extent and the
intent of (A, B) and represent the collection of all objects and attributes covered
by the formal concept (A, B). Consider the set

Ext(X,Y,I) = {A|(A,B) € B(X,Y,I) for some B € L'}

of all extents of (X, Y, I). It can be easily shown that Ext(X,Y,I) = fix(C) for the
L-closure operator C' : LX — L* defined by C(A) = Al

Since B(X,Y,I) = {{A, A1) | A € Ext(X,Y,I)}, B(X,Y, ) can be identified with
Ext(X,Y,I). Given a threshold € € L and a set B C B(X,Y, I) of formal concepts,
C.(B), i.e. the set of e-central points, is the set of all formal concepts which are
similar to every formal concept from B to a degree at least . Such set may be
desirable particularly if B is large and we need just a representative formal con-
cept(s) instead of B. In such case, it is particularly interesting to ask for the best
such representative formal concept, i.e. such for which the similarity degree to ev-
ery formal concept from B is the largest possible. We call such elements optimal
central points and investigate them in Section 3.3. (I

Remark 3: (a) Recall that for a binary relation 7" between sets U and V, the
Galois connection (Ore 1944) induced by T is a pair of mappings 7 : 2V — 2V
and 17 : 2V — 2V defined for M € 2V and N € 2V by

M!™ = {v e V| for each u € M : (u,v) € T},
Nt = {u e U] for eachv € N : (u,v) € T}.
If U = V and T is symmetric, then ' coincides with 7 and we write just M7
instead of M17 or M7,
(b) Consider the Galois connection induced by the e-cut = of ~, i.e. by the

symmetric binary relation % between fix(C') and fix(C) defined for A, A’ € fix(C)
by

(A, A e~ ifandonly if A~ A’ >e. (15)

Clearly, %~ is a tolerance relation which need not be transitive. (A, A’) € %~ means
that A and A’ are similar to degree at least €. As a result of the definitions, for
B C fix(C) and A € fix(C'), we have

C.(B) = B® and B.(A)={A}".

Note also that B.(A) is just the class of tolerance = given by A. O

From the basic properties of Galois connections, we get the following assertions.
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Lemma 3.8: For B, By, By C fix(C),

Bl g BQ implies CE(Bl) Q CE(BQ), (16)
B ¢ C-(C:(B)), (17)
CE(B) = 06(05(06(3)))’ (18)

(19)

CE(B) - m BE(A)

AeB

19

O

Note that (19) says that e-central points of B are just the points common to all
closed e-balls with centers A € B.
As a consequence, we get the following lemma.

Lemma 3.9: For B C fix(C),

BC [ BA(A). (20)
AeC.(B)
For A € fix(C),
A € Ce(B:(A)). (21)

Proof: (20) follows from (17) and (19). Due to (17), {A} C C.(C-({4})) =
C.(B:(A)), whence (20). O

The following lemma is another direct consequence of the observation made in
Remark 3 and the well-known properties of Galois connections.

Lemma 3.10: 1. The mapping cl. : 285(C) — ofx(C) defined for D C fix(C) by
cl(D) = C.(C:(D)) is an ordinary closure operator in fix(C).

2. The set fix(cl.) = {D C fix(C)| D = cl(D)} of all fixpoints of cl. equipped
with C is a complete lattice.

3. D € fix(cle) if and only if D = C.(B) for some B C fix(C), i.e. fix(cl;)
contains just sets of e-central points.

We now present a description of the set C.(B) of central points in our general

setting. First, we need the following lemma.

Lemma 3.11: A€ C.(B) iff SLA, AB)ANS(V B,A) > e.

Proof: By definition, A € C.(B) means that for each A’ € B, S(A, A’) > ¢ and
S(A’, A) > e. Hence, to prove the assertion, it suffices to check that (a) S(A, A’) > ¢
for each A’ € B is equivalent to S(A, A B) > ¢, and (b) S(A’, A) > & for each
A’ € B is equivalent to S(\/ B, A) > e.

(a): By definition and using (A B)(z) = A 45 A (),

S(A,/\B) = A (A(x)ﬁ A A’(q:)) = A N A — A()).
A’eB

zeX zeX A’eB

Hence, S(A, A\ B) > a iff for every A’ € B, S(A, A’) > a.
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(b): Since A € fix(C') we have

s(\/B,A) :S<O (UB) ,C(A)) > S(UB,A)

by (11). On the other hand, (10) yields \/ B D |J B, which implies S(\/ B, A) <
S(UB, A). Hence,

S/ B,A=5(B, A=A\ N\ Q@) —A@x)= / SA, A

zeX A’eB A’eB
and thus S(\/ B, A) > a iff for each A’ € B, S(A’, A) > a. O

The next theorem shows that central points form particular intervals in the lattice
(fix(C), ).

Theorem 3.12: For any B C fix(C),
C.(B) = [c(c@\/B) e~ \B|.
Note that [_, ] denotes an interval in (fix(C), C), i.e.

[C(E®VB),5—>/\B] :{Aeﬁx(C)|C<5®\/B) §A§5—>/\B},

and that fuzzy sets e ® \/ B and ¢ — A B are defined by
<€®\/B> () =¢e® (\/B) () and (s — /\B) () =e— (/\B) (x).

Proof: By Lemma 3.11, A is a central point iff S(A, A B) > cand S(\/ B, A) > ¢,

which is equivalent to A C e — A B and e ® \/ B C A. Since fixpoints of C' are

closed under —-shifts, see (Belohlavek 2002), we get ¢ — A B € fix(C). However,

£ ®\/ B need not be a fixpoint. The least fixpoint greater than or equal to e®\/ B

is C(e ® \/ B). This proves the theorem. O
The following theorem describes closed balls.

Theorem 3.13: For any A € fix(C),

B.(A) = [C(e® A),e — Al.

Proof: Directly from Theorem 3.12 using (14). O

Consider now, in addition to %, cf. (15), the binary relation '~ on fix(C') defined
by

(A, A e¥~ ifandonlyif AmA > =c®e. (22)

Since e ® e < ¢, (A, A') € = implies (A, A’) € “~. Hence, classes (i.e., closed
balls, cf. Remark 3 (b)) of %~ are contained in classes of =, i.e. B.(A) C Be:(A).
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Likewise, blocks of % are blocks of *~. However, there is an interesting relationship
between the closed balls B.(A) and maximal blocks of & which we now investigate.

Lemma 3.14: For each A € fix(C), B:(A) is a block of &~.

Proof: By Theorem 3.13, B.(A) = [C(e® A),e — A]. It follows from (Belohlavek
and Krupka 2008b, Theorem 2) that

B=[CE®(e— A)),e? = CE® (e — A))

is a maximal block of € & which contains the fixpoint ¢ — A. Now, since e2® (¢ —
A)Ce® A, we get O(e?2® (¢ — A)) C C(e ® A). Similarly, since 2 ® (¢ — A) C
Cle?®(e— A)),wegete - ACe?— O(e?® (e — A)). We proved B.(A) C B
which finishes the proof. O

Lemma 3.15: For B C fix(C), C.(B) is non-empty if an only if B is a block of

el
~.

Proof: Due to Theorem 3.12, C.(B) is non-empty iff C(e @ \/ B) < ¢ — A B.
Furthermore, B is a block of “~ iff €2 < S(\/ B, \ B). Indeed, this follows by a
slight modification of (Ganter and Wille 1999, Proposition 54) by observing that
SV B,/\B)2 = \/B ~ A B and that, due to (Belohlavek and Krupka 2008b,

Lemma 1), '~ is a complete tolerance relation on (fix(C'), C). To prove the lemma,
we thus need to check that

C’(e@\/B)QSH/\B iff 52§S<\/B,/\B>. (23)

Let C(e®\/B)<e— AB.Sincec®\/B<C(e®\ B),wegetc®@\/B<e—
A B from which 2 < S(\/ B, \ B) readily follows.

Conversely, if 2 < S(\/ B, A B) then e ® \/ B < ¢ — A B, from which we get
Cle®VB)<C(— ANB)=¢c— AB, because of monotony of C' and the fact
that € — A B is a fixpoint of C'. The proof is finished. O

We say that a closed e-ball B.(A) is maximal if B.(4) = B.(A’) for every A’
with B.(A) C B:(A’). The following theorem describes a relationship between
closed balls and maximal blocks of €.

Theorem 3.16: For B C fix(C), B is a maximal closed e-ball if and only if
B is a mazimal block of “~. In particular, if B is a maximal block of “~ then
C.(B) # 0 and B = B.(A) for every A € C.(B).

Proof: Let B.(A) be maximal. Due to Lemma 3.14, B.(A) is a block of ¢’~. There
exists a maximal block B of €'~ for which for which B.(A) C B (the existence of
B follows from Zorn lemma). Due to Lemma 3.15, C.(B) # (). Take an arbitrary
A" € C.(B).Dueto (20), B C B.(A"). Therefore, B.(A) C B C B.(A’). Maximality
of B.(A) as a closed e-ball yields B.(A) = B, i.e. B.(A) is a maximal block of '~

Conversely, let B be a maximal block of €'~. Observe fist that if B C B.(A)
then B = B.(A). Indeed, due to Lemma 3.15, B.(A) is a block of €~ and hence
B = B.(A) follows from the fact that B is a maximal block of €’~. Therefore, to
prove the claim, it is sufficient to realize that C.(B) # () (Lemma 3.15) and that
for every A € C.(B) we have B C B.(A) due to (20). O
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3.3 Optimal Central Points

Consider now the following problem. Theorem 3.12 describes the set C.(B) of -
central points of B. Every A € C.(B) is good in the sense that the degree A ~ A’
of its similarity to any A’ € B is at least . However, some central points from
C.(B) may be better than others. We call the best ones the optimal central points
of B.

Definition 3.17: Let B C fix(C). A € fix(C) is called an optimal central point
of B if and only if

N\ Dr=4)< N\ (A~ A) (24)

A’eB A’eB

for every D € fix(C).

Remark 4: Note that according to the principles of fuzzy logic,

A (D=~ 4)

A'eB

can be understood as the truth degree of “for every A’ € B: D is similar to A".
Therefore, for an optimal central point of B, such degree is the highest possible.

We now turn to a characterization of optimal central points and their existence
in terms of radii. We need the following concepts.

Definition 3.18: We say that ¢ € L is an admissible radius of B C fix(C) if
C:(B) # 0. We call € the radius of B for A if ¢ is the largest radius for which
A e C.(B).

Observe that for any B and A, the radius of B for A is A 4, .5(A = A’). This
observation and (24) thus yield an alternative characterization of optimal central
points:

Lemma 3.19: A is an optimal central point of B if and only if for every D €

fix(C), the radius of B for A is larger than or equal to the radius of B for D.
The following theorem provides a characterization of optimal central points of

B.

Theorem 3.20: Conditions 1., 2., and 3. are equivalent.

1. The set of all optimal central points of B is non-empty and € is the radius of
B for some optimal central point A.

2. The set of all optimal central points of B is non-empty and € is the radius of
B for any of the optimal central points.

3. € 1is the largest admissible radius of B.

Any of conditions 1., 2., and 3. implies condition 4.

4. The set of all optimal central points is equal to C.(B).

Proof: “l. = 2.”: (24) implies that the radii of B for any two optimal central
points A; and As are equal.
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“2. = 3.”: Assume 2. Clearly, ¢ is an admissible radius of B. If ¢’ is an admissible
radius of B then for any D € C./(B), we have ¢’ < A 4, c5(D =~ A’). Now, for any
optimal central point A of B, (24) and the assumption A 4 p(A = A’) = ¢ give
Aacp(D = A") < e, whence ¢ < ¢, proving 3.

“3. = 1.7 For A € C.(B), ¢ < Ayep(A = A’). On the other hand, since
Aaep(A =~ A') is an admissible radius (the radius of B for A), we have A 4, c5(A ~
A") < e, whence A4 cp(A = A') = €. Since for any D, A cp(D =~ A') is an
admissible radius, we get A 4 cp(D~ A’) <e = A (A~ A'), proving 1.

To finish the proof, we check “2. = 4.”: Assume 2. Clearly, every optimal central
point of B is in Cc(B). If A is not optimal then A, p(A =~ A’) < € and hence
A ¢ C.(B). O

Remark 5: Note that condition 4. of Theorem 3.20 nor the condition saying that
the set of optimal central points of B is non-empty and is equal to C.(B) implies
conditions 1., 2, and 3. Consider the following example (cf. Example 3.6). Let L
be the Godel algebra on the real unit interval L = [0,1]. Let X = {x} (singleton).
Then & = {{°/z},{%%/x},{}/z}} is a set of fixpoints of an L-closure operator
C. This claim follows from (Belohlavek 2001) by verification of the fact that S is
closed under intersections and that a — A € S for every a € L and A € S. Consider
B = {{%/x},{!/x}}. A moment’s reflection shows that the set of optimal points
of B is B. Now, B = Cy4(B) but the largest admissible radius of B is 0.5.

We now turn to the existence of optimal central points of B. We need the fol-
lowing lemma.

Lemma 3.21:

1. € is an admissible radius of B if and only if e @ e < S(\/ B, \ B).

2. For every z € L, z A (z — S(V B, \ B)) is an admissible radius of B.
3. € is an admissible radius of B if and only ife = A (e — S(\V B, \ B)).
4. The set

Rz{z/\(z—>S<\/B,/\B>)|z€L} (25)

is the set of all admissible radii of B.

Proof: Denote d = S(\/ B, \ B).

1. Using Theorem 3.12, C.(B) # 0 iff [C(e®\/ B),e - AB] # 0iff C(e®\ B) C
e = ABiff e®@e < S(\/ B, \ B) (the last two conditions are equivalent due to
(23)).

2. (2N (z—=d)®@ (2N (2 —d)) < 2® (2 — d) < d, hence the claim follows from
1.

3. Using 1., € is an admissible radius of B iff ¢ < ¢ — d which is equivalent to
e=cecA(e—d).

4. A consequence of 2. and 3. O

The following theorem presents a necessary and sufficient condition for the exis-
tence of optimal central points of B.

Theorem 3.22: A set B C fix(C) has optimal central points if and only if the
set R from (25) has a largest element. This element is the largest admissible radius
e of B and C.(B) is the set of optimal central points of B.
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Proof: Follows from 4. of Lemma 3.21 and from Theorem 3.20. O

For some of the well-known structures of truth degrees the description of optimal
central points can be made more particular. As an example, consider the setting
of Example 3.6 and assume that the complete residuated lattice L is the real
unit interval [0,1] equipped with Lukasiewicz t-norm and its residuum. Then if
B = [a, ], the largest admissible radius of B is “_TW and the set of optimal central

points of B contains just one ¢ € [0, 1], namely ¢ = “T'H’. In the rest of this paper, we
show that such more particular descriptions are available if the complete residuated
lattice L has square roots. According to Hohle (1995), a complete residuated lattice
L has square roots if there is a function ViLl—L satisfying

Va®+/a=a, (26)
bb<a implies b<+/a, (27)

for every a,b € L.

Example 3.23 (Hohle 1995) Lukasiewicz, product, and Godel algebras on [0, 1]
have square roots. They are given by

a-+1

a =
va=—
v/a = ordinary number-theoretic square root of a for product,

Va =a for Godel.

for Lukasiewicz,

Theorem 3.24: IfL has square roots then any subset B C L has optimal central
points. For the corresponding largest admissible radius € it holds

5:\/5(/\B,VB>. (28)

Proof: According to 1. of Lemma 3.21 and (26), ¢ is the largest admissible radius
of B. The rest follows from Theorem 3.20. O

Corollary 3.25: If If L has square roots then for any subset B C L, the set of
optimal central points is equal to

[\/S (AB.\/B)2\/B. \/S (AB.\/B)—~ \B

Example 3.26 Consider the setting of Example 3.6 and let L = [0, 1]. In this case,
for a,b € L we have S(a,b) = a — b. Let B C [0, 1] and denote [a,b] = [\ B,/ B].
For Lukasiewicz, product, and Godel algebras on [0, 1], Theorem 3.24 gives the
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following description of the set O of optimal central points of B.

O = {a _2‘_ b} for Lukasiewicz,
0= {[{0\/16]\/6} ggigirba:b:(h for product,
0= {[{CZ}H EZ i Z for Godel.
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similar at least to degree a” is not an equivalence relation because, in general, it is not tran-
sitive. As a result, ordinary factorization using equivalence classes cannot be used. This
obstacle can be overcome by considering maximal blocks of fuzzy sets which are pairwise
similar at least to degree a. We show that one can introduce a natural complete lattice

I}j(z;g;o:g;c structure on the set of all such maximal blocks and study this lattice. This lattice plays
Residuated lattice the role of a factor structure for the original system of fuzzy sets. Particular examples of
Closure operator our approach include factorization of fuzzy concept lattices and factorization of residuated
Similarity lattices.
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1. Introduction

Factorization represents a fundamental construction in mathematics. Its main aim is to capture the process of simplifi-
cation by abstraction. An input to a factorization is a mathematical structure, typically a system of elements equipped pos-
sibly with relations and functions. An output of a factorization consists of another structure, called a factor structure (or a
quotient structure), which can be considered a simplified version of the input structure. Elements of the factor structure
are groups of elements of the original structure, which are indistinguishable from a certain point of view. The indistinguish-
ability is usually represented by an equivalence relation and the groups of elements are the corresponding equivalence clas-
ses. To be able to introduce a naturally inherited structure on the groups of indistinguishable elements, the equivalence
relation needs to be compatible with functions and relations of the original structure.

In this paper, we present a general framework for factorization of systems of fuzzy sets by similarity. The input structure
consists of a system of fuzzy sets equipped with a subsethood relation. The indistinguishability relation which we use for
factorization is represented by the relation “being similar at least to degree a” where similarity degrees are assessed by
means of a well-known Leibniz similarity relation, see Section 2, i.e. the indistinguishability is represented by an a-cut of
a particular fuzzy equivalence relation. We assume that the fuzzy sets are fixpoints of some fuzzy closure operator. Examples
of such systems are fuzzy concept lattices, fuzzy sets in a given universe, or complete residuated lattices.

Such assumptions are natural: We deal with a system . of fuzzy sets and if . is considered too large, we want to simplify
it by putting together those fuzzy sets from # which are pairwise similar to a prescribed degree a (threshold, a parameter to
the factorization). However, the ordinary factorization cannot be used. Namely, an obstacle consists in the fact, well known
in fuzzy set theory, that “being similar at least to degree a” is not a transitive relation and hence not an equivalence relation.
We overcome this obstacle by utilizing results from lattice theory on factorization of complete lattices by compatible reflex-
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ive and symmetric relations. We show that “being similar at least to degree a” is a compatible relation and thus, one can
introduce the structure of a complete lattice on the set of all maximal blocks of this relation. We study this lattice and pro-
vide an efficient description of the blocks which can be used to compute the factor system. Namely, we show that the upper
bounds of the maximal blocks are just fixpoints of a particular fuzzy closure operator for which we present an explicit
description.

2. Preliminaries from fuzzy logic

In classical logic, the structure L of truth degrees consists of the two-element set L = {0, 1} of truth degrees and the truth
functions of logical connectives. In fuzzy logic, there are more options, both for the set L of truth degrees and for the func-
tions of logical connectives. As the structures of truth degrees, we use complete residuated lattices in our approach. Com-
plete residuated lattices are general structures of truth degrees and several variants of them are used in fuzzy logic. A
complete residuated lattice [5,13] is an algebra L = (L, A,V, ®, —,0,1) such that (L,A,V,0,1) is a complete lattice with 0
and 1 being the least and greatest element of L, respectively; (L, ®, 1) is a commutative monoid (i.e. ® is commutative, asso-
ciative, and a® 1 =1®a =a for each a € L); ® and — satisfy the adjointness property: a® b < c iff a < b — c for every
a,b,c € L. The fact that (L, A,V,0,1) is a complete lattice means that the infimum A,_a; and the supremum \/,_;a; exist for
every subset {a; | i € I} C L. Elements a € L are called truth degrees. Operations ® and —, called multiplication and residuum,
are the truth functions of logical connectives “fuzzy conjunction” and “fuzzy implication”. A biresiduum of L is a binary oper-
ation « defined by

a—b=(@—>byAnb-—a).

We denote by < the lattice order induced by L. Examples of residuated lattices are well known. A generic one is: Take
L =10,1] and a left-continuous t-norm ®. That is, ® is binary operation, which is left-continuous in its first argument (as
a real function of two variables), commutative, associative, monotone, and has 1 as its neutral element [13]. Put
a—b=\{cel|a®c<b}. Then ([0,1],min,max,®, —,0,1) is a complete residuated lattice.

Particular  well-known examples include the following t-norms and residua: Lukasiewicz
(a®b=max(0,a+b—1),a - b=min(1,1 —a+b)); Gédel (minimum) (a@b=aAb,a—b=bfora>banda—b=1
for a < b); Goguen (product) (a®@b=a-b,a—b==%fora>band a— b=1 for a <b). Another well-known class of exam-
ples includes residuated lattices which are finite chains, e.g. L = {0,1,... %=1 1} equipped with restrictions of the above-
mentioned tukasiewics or Gédel operations. Throughout the rest of the paper, L denotes an arbitrary complete residuated
lattice.

Given L, we define the usual notions regarding fuzzy sets and fuzzy relations: a fuzzy set (an L-set) A in universe X is a
mapping A : X — L, A(x) being interpreted as “the degree to which x belongs to A”. The set of all fuzzy sets in X is denoted by
[¥. Operations with fuzzy sets are defined componentwise. For instance, the intersection of fuzzy sets A, B € L¥ is a fuzzy set
ANB in X such that (AN B)(x) = A(x) A B(x) for each x € X, etc. For fuzzy sets A,B e ¥, put

S(A,B) = \(A(x) — B(x)), (1)
xeX

AxB= \(A®X) < B(x)). (2)
xeX

S(A,B) and A ~ B are called the degree of subsethood of A in B and the degree of equality of A and B, respectively. Note that
S(A,B) can be seen as the truth degree of “for each x € X: if x belongs to A then x belongs to B”. Similarly, A ~ B can be seen as
the truth degree of “for each x € X: x belongs to A if and only if x belongs to B”. = is a fuzzy equivalence relation,i.e. A~ A =1
(reflexivity), A~ B =B ~ A (symmetry), and (A ~ B) ® (B~ C) <A =~ C, which is called the Leibniz similarity. Furthermore,
S(A,B) =1 iff A(x) < B(x) for each x € X (A is fully contained in B). This fact is denoted by

ACB.

For more details we refer to [5,12,13].

3. Factorization by similarity

Suppose ¢ is a system of fuzzy sets in X, i.e. # C I*. Suppose furthermore that # is a system of fixpoints of an L-closure
operator (fuzzy closure operator) C in X. Recall [2,5,15] that an L-closure operator C in X is a mapping C : [¥ — [* satisfying

ACC(A), 3)
S(A1,A2) < S(C(A1),C(A2)), (4)
C(A) = C(C(A)), (5)

for every A, A, A, € L. As a consequence, we also have
(A1 = Az) < (C(A1) ~ C(Ay)). (6)
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The set fix(C) of all fixpoints of C is defined by
fix(C) ={Ae ¥ |A=C(A)}.

Remark 1. The concept of an L-closure operator generalizes the well-known concept of a closure operator. Namely, for
L ={0,1}, L-closure operators coincide with ordinary closure operators.

We thus assume % = fix(C) for an L-closure operator C. Next, we present three examples of such systems.

Example 1. The first example comes from formal concept analysis of data with fuzzy attributes [5-7,17]. Let (X,Y,I) be a
formal fuzzy context, i.e. X and Y are sets of objects and attributes, and I : X x Y — L is a fuzzy relation between X and Y. For
x e Xandy e Y,I(x,y) is interpreted as the degree to which object x has attribute y. Let T : IX — LY and ! : LY — ¥ denote the
associated operators, i.e.
Aly) = NAE) = 1(xy), B'x) = A\BY) —Ixy)).
xeX yeY

Let #(X,Y,I) = {(A,B)|A' =B ,B' = A} denote the associated concept lattice. #(X,Y,I) equipped with < defined by
(A1,B1) < (A3, By) iff Ay C A, (iff By D B,) is indeed a complete lattice. Elements (A,B) € #(X,Y,I) are called formal concepts
and represent particular clusters in the data described by (X,Y,I). A and B are called the extent and the intent of (A, B)
and represent the collection of all objects and attributes covered by the formal concept (A, B). Consider the set

Ext(X,Y,I) = {A | (A,B) € #(X,Y,I) for some B ¢ L'}

of all extents of (X, Y, ). It is well-known [2] that the mapping C : L* — [* defined by C(A) = A" is an L-closure operator for
which fix(C) = Ext(X,Y,I), Ext(X,Y,I) is the set of all fixpoints of C. Note that (Ext(X,Y,I), C) is isomorphic to (%(X,Y,I), <).

Now, putting & =Ext(X,Y,I), we have our first example of a system of fuzzy sets. Since
BX,Y,I) = {(A,A"Y | A e Ext(X,Y,)},#(X,Y,I) can be identified with Ext(X,Y,I). Therefore, loosely speaking, & is the
concept lattice associated to the input data (X, Y,I). Note also that every L-closure operator in X can be obtained this way, i.e.
from some (X,Y,I), see [2,5].

Example 2. Every complete residuated lattice L can be thought of as a system % of fuzzy sets. Namely, putting X = {x}, we
can identify L with the set L* of all fuzzy sets in X (just identify a with {a/x}). Consider the identity mapping C: L — L, i.e.
C(a) = a. Obviously, C is an L-closure operator on X and fix(C) = L. & = L is our second example. Note that in this example,
S(a,b)=a—b,a~b=a« b, see Section 2.

Example 3. Let = be a fuzzy equivalence on X and put [C_(A)](X) = V,xA(Y) ® (x =y). C_ is an L-closure operator which is
well known in fuzzy set theory. Putting ¥ = fix(C), & contains just the fuzzy sets in X which are called extensional w.r.t. =,
i.e. those satisfying A(x) @ (x =y) < A(y) (reads: if x is in A and x is similar to y then y is in A).

It is easily seen that fix(C) equipped with inclusion C, see Section 2, is a complete lattice in which
/\Aj = QA.7 \/Aj = c(UAJ).
Jjel J Jjel ]
Define a binary relation ~ on fix(C) by
A~B iff A~B) > a.
That is, 9~ is the a-cut of ~. A%~B means that A and B are similar at least to degree a. The following lemma follows from [4]:

Lemma 1. %~ is a complete tolerance on (fix(C), C ). That is, %~ is a reflexive and symmetric relation on fix(C) which is compatible
with infima and suprema in (fix(C), C).
Note that compatibility of “~ with infima and suprema means that for any A;, B; € fix(C) (j € J), if A;*~B; for all j € ], then
/\Ajaz /\ Bj and \/Aj”z \/BJ
Jjel Jel Jjel Jel
Because “~ is a complete tolerance on the complete lattice (fix(C), C) (Lemma 1), we can apply the construction of factor-
ization of complete lattices by complete tolerances described in [10], see also [9,16], and define the factor lattice of fix(C) by

Denote by fix(C) /%~ the collection of all maximal blocks of 9~ i.e.

fix(C)/*~ = {BCfix(C) | (Bx B)C" and (B x B') ¢ “~ whenever B’ > B}.
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That is, blocks B of fix(C)/?~ are maximal sets of fixpoints of C which are pairwise similar at least to degree a. These blocks
are particular intervals in the complete lattice (fix(C), C ). Namely, put

A= N B A= \/ B
Befix(C).A%~B Befix(C) A%~B
for A € fix(C). The following theorem follows from [10, Proposition 55, Theorem 14]. Namely, parts (1) and (2) are particular
cases of [10, Proposition 55] and [10, Theorem 14] for a a complete tolerance “~ on the complete lattice {fix(C), C).

Theorem 2

(1) fix(C)/*~ = {[As, (A0)"] | A € fix(C)}, i.e. the blocks of fix(C) /%~ are certain intervals in (fix(C), C).
(2) With respect to a partial order < on fix(C) /%=, defined for [uy, us], [v1, v2] € fix(C)/*~ by

[y, up] < [v1,02] iff uy Con(iff uz Cvy),

(fix(C)/=~, <) is a complete lattice, called the factor lattice of (fix(C), C) by tolerance 9~.

Note that for Ay, A; € fix(C), the interval [A;,A] is defined by [A;,A;] = {A € fix(C)|A; CACA;}. Note also that it follows
from [10, Theorem 14] that a mapping sending A to [A,, (A;)“] is a \/-morphism of fix(C) to fix(C)/%~, i.e. preserves arbitrary
suprema (but not arbitrary infima); dually, a mapping sending A to [(A"),,A"] is a A-morphism of fix(C) to fix(C)/%~, i.e. pre-
serves arbitrary infima (but not arbitrary suprema).

Our particular setting enables us to describe maximal blocks in a simple way. Note that for a truth degree a € L and a
fuzzy set A € [¥, the fuzzy sets a® A e ¥ and a — A e [* are defined by (a ® A)(x) = a @ A(x) and (a — A)(x) = a — A(x).
We start with following auxiliary result.

Lemma 3. For A € fix(C),A; = C(a® A),A* = a — A.

Proof. A, = C(a® A): Since
a<(Ar~a®A) < (CA)=ClawA)=A~CaxA),

C(a®A) is a fixpoint of C similar to A at least to degree a. Furthermore, if B € fix(C) satisfies a < (A ~ B) then a ® A C B (due to
adjointness), hence C(a ® A) C C(B) = B by monotony of C. As a result, C(a ® A) is the least fixpoint of C similar to A at least to
degree a which immediately yields A, = C(a ® A).

A% = a — A: [2] yields that fix(C) is closed under —-shifts, i.e. if A € fix(C) then a — A ¢ fix(C). Let B ¢ fix(C) be similar to A
at least to degree g, i.e. a < (A ~ B). Then BC a — A (due to adjointness), i.e. a — A is the largest fixpoint of C similar to A at
least to degree a, whence A" =a — A. O

Example 4

(1) Consider Example 1. That is, fix(C) = Ext(X,Y,]I) is the set of all extents of formal concepts of #(X,Y,I). As mentioned
above, (fix(C), C) is isomorphic to (#(X,Y,I),<). One can easily see that the factor lattice fix(C)/?~ is isomorphic to
#(X,Y,I)/~. That is, in this example, the factor lattice yields the factor concept lattice given by similarity threshold a,
see [1,6].

(2) Consider Example 2. That is, fix(C) =L is a support set of a complete residuated lattice L. For c € L,c, = a ® ¢ and
¢% = a — c. The factor lattice L/%~ coincides with the lattice part of a factor algebra of the complete residuated lattice
L modulo =, see [14].

The following lemma describes the mappings sending A to A, and to A°.

Lemma 4. The mappings f : A+ C(a® A) and g : B a — B satisfy

S(A1,Az) < S(f(A1),f(A2)), (7)
S(B1,B2) < 5(g(B1),8(B2)), (8)
f(g(A) CA, 9)
BCg(f(B)). (10)

Proof. By routine verification using standard properties of complete residuated lattices. O

Remark 2. Note that mappings satisfying (7)-(10). were studied in [11].
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Lemma 4 provides us with useful properties. For example, as a direct consequence of Lemma 4, f(A) = fgf(A) and
g(B) = gfg(B), i.e. Aq = ((A0)"), and A? = ((A"),)". Because of this, [Aq, (A2)?] = [((Aa))4, (A0)“], i.€. every [Aq, (Aq)?] is of the form
[(B%),, BY]. By similar arguments, every [(B%),, B‘] is of the form [A,, (A.)"]. This implies a possibility of a dual description of the
blocks, namely, fix(C)/*~ = {[(A%),,A"] | A € ¥}, Let us now turn to a description of blocks of the factor lattice fix(C)/~
which provides a way to compute the factor lattice efficiently.

Let us first note that if we can efficiently compute closures C(A) for A € I* (and if “everything is finite”), we can compute
fix(C) /%~ by computing first fix(C) and then computing the blocks of fix(C)/%~. Namely, the set fix(C) of fixpoints of a fuzzy
closure operator C can be computed by a modification [3] of Ganter’s NextcLosuRe algorithm [10]. In addition, the blocks are
blocks of a tolerance relation and they can be computed by available algorithms (these algorithms come from graph theory;
namely, maximal blocks of a tolerance relation T are just maximal independent sets in the graph of the complement of T).
However, there is a better way than this “naive” one. We present it below.

As we know from Theorem 2, the elements of fix(C)/~ are *~-blocks and every such a block is an interval of the form
[Aq, (Ag)"] for A € fix(C). By the previous results, each such block is determined by its upper bound (A,)®. To compute all ele-
ments of fix(C)/?~, it is therefore sufficient to compute the set

UB = {B e L* | [A, B] € fix(C)/%~ for some A}
of all upper bounds of blocks from fix(C)/?~. Taking into account Lemma 4, the following claim is easy to check.
Lemma 5. The mapping
Ci:Aa—Cla®A)
sending A to (A,)" = a — C(a® A) is an L-closure operator in X.
Now, C, provides a useful description of UB.

Theorem 6. UB = fix(Cq).

Proof. Let B € UB. Then there exists an A such that [A, B] € fix(C)/%~. By Theorem 2 (1) and Lemma 4 and its consequences,
B = (B,)", i.e. by Lemma 3, B=a — C(a ® B), i.e. B € fix(C,).

Conversely, let B ¢ fix(Cy), i.e. B=a — C(a ® B) = (By)®. Due to Theorem 2 (1), in order to see that B € UB, it suffices to
verify that B € fix(C). This is, indeed, true: Clearly, C(a ® B) € fix(C). Therefore, B=a — C(a ® B) € fix(C) due to the fact that
fix(C) is closed under a-shifts [2]. O

Therefore, the fixpoints of C, are just the upper bounds UB. Since, as mentioned above, fix(C)/?~ can be restored from UB,
we reduced the problem of computing the factor lattice fix(C)/?~ to the problem of computing a set of fixpoints of a fuzzy
closure operator, namely, of C,. This way is more efficient than the “naive” one because we need not compute all the fix-
points of C (note that fix(C,) C fix(C)) and, moreover, we need not compute the maximal blocks of fixpoints which is a
time-consuming step even when one employs specialized algorithms. Note that some of the formulas and results obtained
in this section generalize those from [6] where a particular case of concept lattices was considered, see Example 1. In par-
ticular, it was demonstrated in [6] that the speed-up in computing fix(C)/%~ using C, is high and depends in a natural way
on the threshold a.

Alternatively, one can proceed in a dual way and use the lower bounds of blocks from fix(C) /?~. In the rest of this section,
we briefly describe the approach. Recall [8], [11] that an L-interior operator I in X is a mapping I : L¥ — [* satisfying

I(A) A, (11)
S(A1,A2) < S(I(A1),1(A2)), (12)
I(A) = I(I(A)), (13)

for every A, A1, A, € I*. The set fix(I) of all fixpoints of I is defined by
fix(I) = {A € [*|I(A) = A}.
In addition, define
LB = {A € L* | [A, B] € fix(C)/*~ for some A}.
LB is the set of lower bounds of blocks from fix(C)/?~. The following lemma follows easily from Lemma 4.
Lemma 7. The mapping
I :A—C(a® (a — A))

sending A to (A%), = C(a® (a — A)) is an L-interior operator in X.

Theorem 8. LB = fix(I,),
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Proof. Let A € LB. Then there exists a B such that [A, B] € fix(C) /?~. From Theorem 2 (1) and consequences of Lemma 4 we
have A = B, = C(a ® B), B= A" = a — A. Put together, A = C(a ® (a — A)) = I,(A) and A € fix(l,),

Conversely, let A € fix(ly),i.e. A = C(a ® (a — A)) = (A?),. This means that A is a fixpoint of C. Since a-shifts of fixpoints are
also fixpoints [2], we get that B=a — A = A% is a fixpoint of C. Now, [A, B] = [Bg, (B;)?] (Lemma 4 and its consequences), which
is an element of fix(C)/?~ (Theorem 2). This shows A € LB. O

4. Conclusions

We have demonstrated that the straightforward idea of grouping fuzzy sets by putting together those which are suffi-
ciently similar, i.e. similar at least to a prescribed degree a, leads to feasible structures in spite of the fact that “similar to
degree at least a” is not an equivalence relation. Particular examples of the general procedure presented here include factor-
ization of concept lattices and factorization of complete residuated lattices. Note also that our results are degenerate in case
of ordinary sets. Namely, similarity to degree 1 means equality of ordinary sets, while similarity to degree O presents no con-
straint. Correspondingly, fix(C)/!~ is isomorphic to fix(C) and fix(C)/°~ consists of a single block containing all fixpoints
from fix(C). From this point of view, this paper points out a phenomenon which is hidden in case of ordinary sets.
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